データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

データ・アナリティクス入門

仮説が導く多角的学びの扉

仮説はどう考える? 仮説を考える際は、決め打ちにせずに複数の視点から仮説を立てることが大切です。仮説同士に網羅性を持たせるため、異なる切り口で検討を行い、検証時には何を比較基準にするかを意識的に選ぶようにしましょう。 データはどう集める? データを収集する際には、対象者が意味のある情報源であるか、またどのような方法(アンケート、口頭など)で情報を得るのかを考慮してください。比較対象となるデータを収集することを忘れず、都合の良い情報だけでなく、反論となる情報も取り入れて検証するように意識します。 仮説はどう分類? 仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大きく分類され、時間軸(過去・未来・将来)によってその中身は変わっていきます。 過去データで発見? たとえば、過去に掲載していた販売サイトのアクセス数やコンバージョン率を再確認することで、当時気づかなかった新たな発見が得られるかもしれません。担当していなかった時期のデータでも、改めて見返すことで仮説を生み出す練習ができます。また、メールマガジンのクリック率や流入ページ、ページビュー数なども注目すべき指標です。 多角的検討は必要? これまで、思いついた仮説に合致する情報を優先的に探していたかもしれませんが、仮説が決め打ちにならないよう、複数の視点から網羅的に検討する意識が求められます。What、Where、Why、Howの各要素に落とし込んだうえで、プロセス通りに漏れなく検討していくことを心がけましょう。

デザイン思考入門

試作×実践で拓く未来のカタチ

他の試作品に何を感じた? ライブ授業では、他の受講者が制作した試作品について説明を受け、非常に刺激を受けました。各試作品は、バックパックの課題を解決するための工夫が施され、独自の発想が感じられました。 AI画像の活用は? また、参加者の中にはAIを活用している方が多く、ビジュアル作成の段階でAI画像生成が有効であると実感しました。一方で、テクスチャーや機能、使い心地といった要素はAIだけでは表現しきれず、実際に手に取ってテストできる試作品があると、より良いと感じました。AI画像はあくまで試作の序盤で作成するものであり、実物の試作品と組み合わせて使用するのが望ましいと思います。 デザイン思考は役立つ? また、試作品と聞くと、どうしても物理的な「モノ」を連想してしまいますが、見えないサービス分野においてもデザイン思考は十分に活用できると感じました。顧客目線でサービス改善の課題を徹底的に検討し、そのフローを整備、可視化し、模擬テストを経て問題がなければ実際に現場で実行するといったプロセスが有効です。 試作をどう評価する? 商品企画の仕事に携わっているわけではないため、試作やテストの機会は限られていますが、現在、職員向けにミッション・ビジョン・バリューを展開する案を考えています。ポスターに加え、名刺サイズのものやメッセージ交換カードなど、さまざまな形式で展開する予定であり、簡易な試作を制作した上で、職員からのフィードバックを反映させながら完成度を高めていきたいと考えています。

戦略思考入門

IT企業向け経営戦略の新たな視点を学んで

差別化の新たな視点とは? これまで行ってきた「差別化の検討」では、「他社製品にはない新しい機能」や「他社サービスにはない新しいサービス」、「当社独自の技術やノウハウ」といった限定的な考え方しか持っていなかったことに気づいた。これらがあれば「IT企業としての差別化になる」と考えていたからだ。しかし、変化の激しい業界で継続的に自社の優位性を保つためには「VRIO」といった分析(評価)が必要であることや、ポーターの「3つの基本戦略」を知ることができて良かった。また、「差別化」を考えるのは難しいものであり、「集合知」や「外部の力」の活用、さらには「ライバルを意識し過ぎないこと」が大事だという話が印象的だった。 VRIOを人材戦略にどう活用? 次期中期経営計画において「VRIO」に当てはめて考えてみたいが、現段階では各要素に対するイメージが湧いておらず、自社の課題が膨らむばかりで途方もない感じがしている。そのため、時間がかかりそうだし、個人としても会社としても何か結論を出すのは相当難しい気がする。まずは、身近な領域として自部門の担当領域である人材採用戦略において「VRIO」を活用してみたい。 外部の力をどう取り入れる? 具体的には、自身と部員(採用担当)の考えを書き出し、「集合知」を活用する。また、親会社の採用活動を参考にし、自社に足りない部分(活動)を洗い出し、それらをどのように埋められるか(差をなくせるか/代替アクションがあるか)考えてみたい。これが「外部の力」の活用である。

戦略思考入門

捨てる勇気が成長の鍵となる瞬間

捨てることの重要性とは? 捨てることの重要性を再認識しました。何かを始めるよりも、何かを捨てることのほうが難しいということは理解していますが、それを実践するには大きな苦労が伴います。利害関係を持つ人や変化を嫌う人たちの反対に直面することが考えられますが、それに対しては利益や会社の戦略の方向性を明確に打ち出し、論理的に説得することが必要です。 展示会の出展は本当に必要か? 例えば、展示会への出展について考えてみます。現在の市場シェアにおいて、展示会に出る意味があるのか、必要最小限の出展で十分なのではないかと再検討する必要があります。また、代理店への年末記念品の配布についても、果たしてそれがサービス向上につながるのか、本来の業務での関係構築のほうが適切なのではないかと疑問を持ちます。 見落としがちな優先順位設定 意外にも見落としがちなことに気付きました。まずは自分の中で各部署ごとに優先順位をつけることが重要です。各部署の業務分掌を基にして、どれが本当に必要な業務なのか、捨てられるものはないのか、捨てた場合のデメリットを補えるのか、アウトソース可能なものはあるのか、細かな点でも捨てられる部分はないのかを洗い出します。 戦略構築に必要な要素は? そのためには、会社の戦略・方向性と一致しているかどうか、論理的に矛盾がないか、全員に自信を持って説明できるか、組織構造に変化が必要か、リソースはどのように確保するか、代替手段はないかなどを考慮して戦略を組み立てる必要があります。

戦略思考入門

戦略思考で切り拓く未来への一歩

長期視点って大事? 戦略思考は短期的な成果だけでなく、長期的な視点に立って計画や行動を進めることで、持続可能なビジネス成長を実現するための重要な要素であると学びました。限られたリソースである時間や人材を最もインパクトの高い活動に集中させるために、フレームワークを活用して幅広い視野を持つことの大切さも実感しています。今後は、内部の戦略だけにとどまらず、外部の市場や競争環境の変化をいち早く察知し、柔軟に対応できる力を身につけたいと考えています。 どう戦略を磨く? 現在、営業企画として業務に従事しており、ターゲットの洗い出し、データ分析、プロジェクト計画の策定といったさまざまな場面で戦略思考の必要性を感じています。今後は、アウトプット作成に際して常に戦略的な視点が反映されているかを確認する習慣を確立し、より質の高い企画立案に努めたいと思います。 未来をどう描く? まずは、本講座の復習や読書を通して知識をさらに深めることを第一歩とし、次のステップとして自社業務におけるシナリオプランニングに取り組みたいと考えています。複数の異なる市場シナリオを設定し、それぞれに対する営業戦略を検討するとともに、データ分析ツールを活用して顧客データや販売データから有用なインサイトを抽出し、戦略の根拠をしっかりと定めたいです。また、メンターや同僚とのディスカッションを通じたフィードバックを取り入れ、PDCAサイクルをしっかり回していくことで、より実践的な戦略思考を養っていく所存です。

戦略思考入門

選択がビジネスを決める:収益を最大化する方法とは

ビジネスの方向性をどう決定するか? 戦略において、何かを捨てることも含めた選択を行うことは、ビジネスの方向性を決定することと同義であると感じました。選択とは優先順位付けのことであり、その基準の設定が重要です。基準を複数パターンで見直すことで、固定観念を打破し新しい戦略を生み出すことが可能だと学びました。 トレードオフの関係をどう活かす? また、複数の検討要素がトレードオフの関係にある場合、一方に注力することが収益の安定に繋がります。しかし、トレードオフの要素を両立させるアイデアに到達すると、ブレークスルーが生まれ、従来考えられなかった大きな収益を得ることができます。この点に共感し、私もこのような姿を目指しています。 顧客提案における優先順位は? 様々なシーンで優先順位付けが必要ですが、顧客への提案は総花的になりがちです。本当のニーズを見極め、優先順位を検討していきたいです。例えば、サービスの質なのかコストなのかといったトレードオフに関しても、最大化ポイントを見つけることで迅速に注力できます。また、顧客の特性に応じた柔軟な対応も重要だと改めて認識しました。 提案方針の練り直しは? 現在進めている提案を通じて、選択の重要性をチームで共有し、提案方針の練り直しを行います。優先度の考え方にはメンバー間で異なる可能性があるため、アイデアを出し合い、複数のパターンで検討します。顧客の特性を見極め、最も顧客に響く提案を選択することで、効果の最大化を図りたいと思います。

戦略思考入門

手法が変える!戦略・視座の実践術

フレームワーク習慣は? フレームワークの利用、高い視座、そして長期的な視点という3点が学びになりました。まず、フレームワークを日々の業務に取り入れて活用する習慣をつけたいと感じました。これにより、ある程度慣れれば自然と物事を整理できるようになるかもしれないと思います。 実務で戦略はどう? また、高い視座と長期的な視点は、たとえ経営層でなくとも戦略を練る上で必須なものだと実感しました。これらは、単に理論上のものではなく、実際の業務においても重要な視点と感じています。 現場で安全対策は? 現在、セキュリティチームも兼任しているため、その現場で学んだことを実践に活かしたいと考えています。セキュリティにおいては、コスト、利便性、セキュアさという3つの要素がトレードオフの関係にあるため、施策を検討する際にはこれらをしっかり意識する必要があります。 新施策の効果は? 新たなセキュリティ施策を立案するにあたっては、NIST RMFやPughマトリックスといったフレームワークの利用が効果的であると確認しました。これらを活用し、経営戦略とリスクマネジメントを融合させる取り組みを進めたいと考えています。 アイデア整理はどう? さらに、セキュリティ施策のアイデアをWikiにまとめる際、あらかじめテンプレートとしてNIST RMFなどの要素を記載しておく仕組みを整えました。こうすることで、アイデア出しの段階からフレームワークを活用する流れを自然に作り出すことができます。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

「検討 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right