データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

マーケティング入門

ビジネス成功の鍵を握る顧客ニーズの把握術

顧客のニーズを把握する方法は? 「何を売るか」について非常に面白い講義だったと思う。顧客の潜在的あるいは真のニーズを売る側が事前に把握し、具体的に提示することが、多様なサービスにおいても活用できると感じた。例えば、スーツの事例において、コロナ禍での必需品であるマスクを早めに市場に投入したことが、顧客のニーズに合致して成功に繋がったのではないかと考える。また、私自身ビジネスを進める上で、事前のヒアリングを通じて必要な情報を収集し、顧客や潜在顧客に合った商品やサービスを提供することが、顧客満足度の向上に寄与すると感じている。 業務改善で考えるべきことは? 社内の業務改善の観点から見ても、医療や介護業界ではDX化が遅れている。しかし、顧客や従業員にとって無駄な業務を減らし、効率的に業務に専念できるようにすることは、ペインポイントの解消に繋がるのではないかと考える。 自分の強みをどう活かす? また、業務効率化を年単位で行っているが、できれば四半期ごとに各部署の管理職と議論し、より良いサービスの提供に専念できるようにスタッフへのヒアリングを強化したい。そして、自分自身の強みを整理し、世の中に貢献できるサービスを見つけ、将来的な起業の指針として知識を活用していきたいと考えている。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

クリティカルシンキング入門

ナノ単科で見つけた未来のヒント

アイキャッチは有効? 【目を引くキャッチフレーズで印象づける】 資料作成や情報伝達において、まずは冒頭に目を引くアイキャッチを配置することが重要です。これにより、読む人の興味を引き、伝えたいポイントが一目で理解できる構成になります。 視覚表現は伝わる? グラフや図、文字の色、フォントといった視覚要素は、要点をパッと伝えるための有用なツールです。資料全体の構成や内容を整理し、何が一番伝えたいのかを明確に示すことで、相手に情報を探させない資料作成を実現できます。 グラフの使い方は? アンケート収集や実績報告、データを基にした考察の場面では、グラフを用途に合った形で活用することが求められます。色使いは控えめにしつつ、強調すべきポイントが際立つように工夫することが大切です。 文章の見直しは? また、資料や文章は提出前に客観的に見直し、伝えたい内容が確実に伝わるかどうかを確認することが必要です。読み手の視線がどの順序で情報を捉えるかを考慮し、論理的な構造と流れを意識した文章作成を心がけましょう。 強調方法は効果的? このように、シンプルで分かりやすい表現と、効果的な視覚的強調を組み合わせることで、資料の要点がすぐに把握できるコミュニケーションが実現します。

戦略思考入門

フレームワークで見つける新たな視点

フレーム活用の効果は? フレームワークを活用することで、漏れなく効率的に検討を進められることを再認識しました。特に、フレームワークを皆で習得することで、メンバー間で共通の言語を使って会話ができる点が大きな利点だと思います。以前は3CやSWOT分析、バリューチェーン分析などの基本的な分析をしないままに戦略を立てようとしていました。しかし、まずは自分自身で実践し、手を動かして考えることが必要だと感じました。 情報不足の理由は? 3CやSWOT分析を行うためには、業界や他社の情報がまだ不足していると感じているため、これから地道に情報を収集していきます。一方、バリューチェーン分析に関しては、自分の所属する部署に限定して分析するのも良いかもしれないと考えました。このフレームワークは、どこに人材と資金を投入すべきか判断し、経営陣からの合意を得る際に非常に有効だと実感しました。 実践から何学ぶ? 具体的なアクションとしては、まず3CとSWOT分析を試してみて、空白部分を明らかにし、見えていない点や情報不足の箇所を洗い出します。また、自チームのバリューチェーンを描いて、同僚や上司と共有し、フィードバックをもらいながらブラッシュアップしていきたいと考えています。

戦略思考入門

学んだフレームワークで未来を切り拓く

範囲の経済性を理解するには? 今週は、規模の経済、習熟効果、範囲の経済性、ネットワークの経済性について学びました。特に範囲の経済性は、その適用範囲が非常に広いことに驚かされました。このようなフレームワークを利用することで、問題の本質を見極め、どう解決に導くかを常に考えることが重要だと感じました。一般的に「これは当然だ」と思われていることも、「本当にそうなのか?」と疑問を持つ姿勢が大切だと理解しました。 習熟効果と組織の連携 私たちの会社は基本的に販売を行っているため、実務においては習熟効果と範囲の経済性を組織として活用していきたいと考えています。特に範囲の経済性は人事異動や社員評価の場面でも役立つと期待できます。また、市場の声を本社に伝達し商品開発に生かすため、顧客ニーズの本質を見極め、それに基づいて規模の経済性が発揮できる分野や商品についての提案をしていく必要があります。 情報収集と考察力を鍛えるには? さらに、「本当にそうなのか?」と問い続けながら、本質を見極める習慣を付けていきます。そして、情報収集にあたっては、一つの情報源に頼らず、なるべく一次情報に触れ、何が正しいのか、また世の中がどの方向に進んでいるのかを考えていく考察力を養っていきます。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

クリティカルシンキング入門

振り返りから学ぶ成長のヒント

振り返りはなぜ大切? 振り返りの重要性を強調する場面が多くあり、これが大事であると実感しました。特に今週は、これまでの学びを総合的に見直し、どのように実践に活かすかを整理する良い機会となりました。 目標と業務の問い? 個人の業績目標に関しては、目標設定時だけでなく、進捗中であってもその問いが正しいか再考する必要性を実感しています。また、ルーチン業務の改善においては、日々の業務が本質的に必要であるか、そして最善の方法を取っているかを常に考えることが大切だと感じました。 意見はどう発信? 加えて、社内プロジェクトにおいては、単にトップダウンの指示をこなすのではなく、自らも積極的に情報を収集し、企画や進め方において自分なりの意見を提供する姿勢が求められています。 計画通り進んでる? 業績については、隔週で自身で業績と進捗状況を確認し、当初の計画と一致しているか、そして現状でも本質的であるかを、欠けている視点がないかどうかとともにチェックすることが重要です。 ルーチンはどう管理? ルーチンに関しては、日々意識することが理想ですが、難しい場合は気になる点をメモし、月に一度、そのメモについて調査し解消を図るようにしています。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

デザイン思考入門

実践から紡ぐ学びの軌跡

チャット改善はどう進む? 社内チャットツールの使い勝手向上を目指し、ユーザーインターフェースの変更や新たな機能の追加を試み、実際のユーザーからのフィードバックを収集・分析する取り組みを行っています。この試作プロセスにより、より使いやすいツールへの改善が期待できます。 オンライン改善の秘訣は? また、顧客向けのオンラインポータルについても、製品情報やサポート情報が見やすく、アクセスしやすいようにデザインや機能の改善を試行中です。実際の顧客の意見を反映しながら、ユーザビリティの向上を図っています。 試作で何が変わる? デザイン思考の「試作」ステップを業務に取り入れることで、従業員や顧客のニーズに応じた具体的なソリューションの提供が可能となりました。さらに、ユーザーを巻き込むワークショップにより、彼らの視点やニーズを直接把握することができ、実用的な提案を行う基盤が整いました。 テストはどう効果? 加えて、デザイン思考の「テスト」ステップをCXソリューションの提案プロセスに組み込むことで、顧客の実際の使用状況や要求を的確に反映した提案が可能となり、提案内容の精度および顧客満足度の向上につながる見込みです。

「情報 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right