アカウンティング入門

数字が導く学びの冒険

売上原価の謎は? オリエンタルランドをモデルケースとして、B/SやP/Lの読み解きを学んだ内容は非常に興味深いものでした。キャストが売上原価に組み込まれており、その対応のすばらしさが売上に直結する事業であることから、研修など人材育成に多くの費用がかけられているという仮説を立てることができました。また、売上原価にロイヤルティが含まれている点については、ウォルトディズニー社との契約内容にも思いを馳せることになり、日曜日の振り返りの際に話題となりました。 現金留保の行方は? 震災後、流動資産としての現金留保に経営方針が変わったという点も印象的でしたが、実際にどのように現金を活用しているのか知りたくなりました。また、グループディスカッションでは、オフィシャルスポンサーへの経費負担という話が出た中で、先生からアトラクション施設工事費をスポンサーに負担してもらう新たなビジネスモデルについて学ぶことができました。 どの点が響いた? さらに、以下の2点が特に印象に残りました。まず、ちょうど4月の月次が発表されたタイミングで、B/SとP/Lがどのように連動しているのかを確認できたこと。次に、オリエンタルランドと同様に、保育業界でも現場の人件費が売上原価に組み込まれていて、その業界特有のP/LとB/Sの特徴がどのようなものかを探求したいという意欲が湧いたことです。 学びの効果は? 今回の学びを通して、財務三表が以前に比べて身近に感じられるようになりました。わずか6週間で大きな変化があったと実感し、グループディスカッションやグループワークに参加したことで、自分一人では考えつかなかった視点やアプローチに触れることができ、とても有意義な時間でした。仕事では味わえない満足感を得るとともに、学ぶ習慣が蘇り、今後も継続して知識を蓄積し、新たな引き出しを作りながら社会に少しでも貢献できればと感じています。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

リーダーシップ・キャリアビジョン入門

振り返りが導く新たな自分

振り返りの大切さは? 今回の学びでは、実際の経験をもとに成長を促す方法やモチベーションの維持・向上について理解を深めることができました。経験から学ぶプロセスでは、まず振り返りを習慣化することが重要であると実感しました。実際に取り組んだタスクを振り返ることで、目指すべき姿とのギャップを確認し、メンバー自身が課題を認識する土台を整えることができるためです。事実に基づいた評価や、明確な基準に沿った成功事例と改善点の双方を伝えるアプローチが、より実践的な学びにつながると思います。 仕事任せは効果的? また、メンバーに仕事を任せる際には、執行責任を持たせリーダーによる干渉を最小限に抑えることで、成長の機会を十分に提供できると感じました。不測の事態への迅速な対応と、組織全体での改善策の検討も重要なポイントです。こうした経験を通して、メンバーが自らの力で気づきを得て、主体的な行動へとつなげる環境作りの大切さを学びました。 モチベーションの鍵は? さらに、モチベーションに関しては、働く理由と働く環境の両面から考えることが必要だと実感しました。金銭的報酬や社会的評価、自己実現の場の提供など、多角的な視点が組み合わさることで、より一人ひとりに適した動機づけが可能になります。理論として取り上げられる各モデルを参考にしながら、相手を尊重し、適正な目標設定や信頼関係の構築を継続的に行うことの重要性を再確認しました。 タスク運用の実感は? 実際のタスク運用では、まずタスクの背景、目的、期限、サポート範囲を明確にし、初めての経験を積む機会として具体的な行動を促すステップを実践しました。タスクの進行状況を確認しながら、適宜振り返りの機会を設け、メンバーが自らの言葉で気づきを表現できるよう導いた結果、若手社員が一人称で考え、主体的な学びを得るプロセスがよりスムーズに進むと感じています。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

デザイン思考入門

心と色で拓くビジネスの未来

色で感情は伝わる? まず、自己紹介の際に「今の気分は何色か」を色で表現するというお題に取り組むよう指示された点が印象に残りました。最初は意外に感じたものの、先生から「デザイン思考では物事をビジュアル化することが重要」と説明され、なるほどと納得しました。普段、仕事や私生活でさまざまな表現方法を用いているものの、色で気持ちを表すという発想はあまり意識していなかったため、新鮮に感じました。 デザインはなぜ重要? 次に、「ビジネスプランからデザインへ」というテーマの講義で、改めて気づかされることがありました。ビジネスを生み出す際、市場価値や競合状況、資金繰りなどの分析が重要視されると同時に、顧客そのものやその行動に注目し、顧客体験価値を最大化するアプローチが存在することを学びました。この考え方が、「初めから万人ウケするものは作れない」という現実を実感させ、デザイン思考の価値を感じさせるものでした。 新発想の壁は? 現在、私はSIerに勤め、新たなビジネスプランを考える立場にあります。IT業界では、AIを活用した取り組みが多く見受けられますが、既存サービスについては既に多くのアイディアが出されている状況です。そのため、従来のマーケット分析だけではなかなか新しい発想にたどり着くのが難しいと感じていました。 共感はどこで生まれる? そこで、今回学んだ「人間中心」や「顧客体験価値を最大化する」という視点で、まずは一般企業の従業員の中から特にどの部署・誰に焦点を当て、どれだけ共感できるかを試みることにしました。これまでは、ビジネスを考える際「モノ」ではなく「コト」に着目していましたが、具体的なイメージがつかみにくく、行き詰まりを感じていました。今後は、改めて「ヒト」を重視し、顧客の行動や体験に寄り添いながら、新しいビジネスの可能性を探っていきたいと思います。

マーケティング入門

顧客を惹きつける表現の極意を学ぶ

商品魅力はどう伝える? 今週は「どう魅せるか」を考えることに集中した1週間でした。顧客に正しく商品の魅力を伝えるためには、その商品に対するイメージやメリットを理解し、効果的に伝えることの重要性を学びました。具体的には、ある商品の名称変更に伴うヒットの事例から、「はまる」表現の力を知ることができました。 普及要件はどう理解? さらに、新しい商品が普及するために重要な5つの要素、イノベーションの普及要件についても学ぶ機会を得ました。私の仕事では、新たな金融商品に関するサービスを開発する場面があるため、試用可能性などは今後の仕事に活かせる重要な視点となりました。 差別化の罠、どう防ぐ? 顧客を見ているつもりでも、つい競合他社との比較にばかり注目し、差別化を意識するあまり、肝心の顧客の気持ちから遠ざかってしまう「差別化の罠」についても理解が深まりました。これは、特に社内でよく起こることであり、慎重に対応する必要があると感じています。 普及のポイントは? 特にセキュリティトークンなどの普及していない金融商品サービスを開発する際には、イノベーションの普及要件が有効な指針となるでしょう。現在、同じ部署内で開発中のサービスはリリース直後で、提供予定の企業から機能のヒアリングを行いながらロードマップを作成しています。ただ、意見をそのまま取り入れようとする傾向があるため、それで大丈夫なのかとPdMに確認したいです。 実践にどう繋げる? 今週の学びが直接的に私の仕事に活かせる場面を具体的にイメージするのは難しいですが、自社プロダクトの開発チームと積極的に対話をしてみたいと思います。また、ナノ単科修了までに金融教育系のサービス企画書を完成させたいと考えており、その際に顧客が抱くイメージを設定し、サービス名(仮称)を検討したいと考えています。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

アカウンティング入門

「ビジネスモデルを理解し資金調達を成功させる方法」

貸借対照表の理解を深めるには? 貸借対照表(B/S)の構造を学んだ今週、「お金の使い道と調達方法は表裏一体である」というフレーズが特に印象に残りました。 ミノルのカフェ経営のビジネスモデルでは、自分の理想を実現するために初期投資金額を他の誰かから調達する必要がある場合でした。自分の手持ち資金が無限にあるわけではないため、出資を受けるか?借り入れを検討するか?など初期投資金額の調達方法を考える必要があることを学びました。 資金調達の重要性とは? 事業主自身がビジネスモデルを理解しているつもりでも、他者から資金を得る場合は、自分のお金の使い道を客観的に説明し、納得してもらう必要があります。そのため、資金調達の際にはビジネスにおけるお金の使い道を明確にする必要性を強く感じました。 これを機に、自社の決算書のB/Sを見直し、会社の健康状態をチェックしてみたいと思います。 新規事業の資金はどう準備する? 新規事業を行うにあたり、初期費用がかからないものと初期費用はかかるが後から回収していくものの2パターンがあります。後者の場合、資金調達が必要になることもあるため、この講座で学んだB/Sのノウハウを活かし金融機関に相談したいと考えています。調達したお金の使途と利益の上げ方についても理解を深め、B/SとP/Lの双方を活用した収支計画を立てたいと思います。 初期投資費用をどう説明する? 自社の新規事業を行うにあたって、必要な初期投資金額を算出し、以下のような費用を根拠を持って説明できるように準備します。 - 不動産契約費用(敷金・礼金・初期費用など) - 家具家電費用 - インテリアデザイン費用 これらの費用を算出し、必要に応じて借入を検討するつもりです。なぜこの費用が必要なのかも併せて説明できるようにしたいと思います。

アカウンティング入門

P/LやB/Sが身近に!苦手意識が和らいだ瞬間

P/LやB/Sを理解するための第一歩とは? P/LやB/Sについてこれまで触れる機会がほとんどなかったため、これらの用語は難解なものでしかなく、強い苦手意識を持っていました。しかし、演習を通じて実際のP/LやB/Sを見てみると、学んだ用語がそのまま表に反映されており、その意味も理解できました。この経験を通して、以前よりP/LやB/Sを身近に感じるようになり、苦手意識も和らぎました。未知の世界に少しでも触れることができたことに、素直に喜びを感じています。 P/LやB/Sを読む機会をどう増やす? 今後は、気になる企業のP/LやB/Sを読む機会を積極的に設け、世の中の資金の流れや仕組みを理解したいと思います。また、新規事業提案の際には、今回学んだ資金の流れを意識して提案書を作成するつもりです。グループワークで新規事業の際には予測財務諸表が良いとのアドバイスも受けましたが、9月末までに提案をまとめる必要があり、現時点ではコンセプトや価格、原価、戦略が定まっていないため、予測財務諸表の作成は困難でした。今後、話が進んだ際には関係する複数部署に協力を仰ぎ、予測財務諸表を作り、しっかりと資金面で先を見据えた提案を行う予定です。 新規事業に必要な数字の意識とは? 予測財務諸表の作成を念頭に置きながら、まずは他社のP/LやB/Sをたくさん見ることから始めようと思います。しかし、それだけではなく、いくらで販売するのか、売上見込みはどの程度か、原価はいくらに設定するのか、販管費はどの程度必要か、利益はどれくらい見込めるか、固定資産として必要なものは何か、負債はどのように変化していくか、必要経費はどこから調達するかなど、具体的な数字を意識しながら計画を立てていくつもりです。まずは、誰にどのような商品やサービスを提供するのかを明確にします。

アカウンティング入門

バランスシートで見つけた経営のヒント

資金調達はどうする? 貸借対照表は、資金調達方法と資金の使い方を示す重要なツールです。自身の事業コンセプトを実現するためには、まず「資金調達方法」として、負債(流動負債・固定負債)と自己資金の二点を意識することが必要です。負債の場合、元金や利子の返済が求められるため、確実な現金の確保が不可欠です。 資金の使い方は? また、資金の使い方は、1年以内に現金化される流動資産と、1年以上かかる固定資産に分けられます。事業コンセプトに合わせて、それぞれの比率が変動することを念頭に、各分類の金額の比重を確認すると、経営判断の材料にしやすくなります。 割合とバランスは? 貸借対照表の示す各項目の割合をしっかり捉え、事業や業種に応じた適正なバランスを検討することが大切です。たとえば、毎月の返済が求められる場合、返済分を利益として確保するキャッシュ創出が必要になります。自己資本率や流動比率などの数値を参考に、どの状態が適正かを判断できるようにすることも重要です。 実践で活かすには? さらに、資金調達方法や資金の使い方が具体的にどのように事業に貢献しているのか、詳細に考えるとより実践的です。融資などによる資金調達や、運転資金、設備投資への活用など、事業ごとに最適な比率が求められるため、理想的なバランスを実現するためのステップを考察することが重要です。 会計分析はどう? また、月次会計の説明や決算報告書の分析において、B/Sの仕組みが理解できると業務の全体像が明確になり、事業コンセプトとのつながりを説明しやすくなります。実際の数値の動きを分析し、先輩からのフィードバックを受けながら分析能力を向上させることも、学びを深める上で有益です。さらに、関連する書籍を読んで知識の幅を広げることも、今後の経営判断に役立つでしょう。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

デザイン思考入門

AIと語り合うアイデアワーク

生成AIで何を学んだ? 試作のグループワークを通じて、多くの受講生が高度な生成AIを活用している様子を目の当たりにし、私自身にとって大きな学びとなりました。アイディアを言語化したり、絵にすることに抵抗がなく、むしろ自らビジュアル化を楽しむ私にとって、このような生成AIの活用には改めて驚かされました。最新のテクノロジーを適切に用いることで、高いレベルのアウトプットが迅速に実現できるという点に、非常に刺激を受けました。 AIとデザイン思考はどう? 試作の過程で、生成AIが具体的なプロダクトデザインにおいて非常に得意であることが実感できました。一方で、デザイン思考を単なる思考法として用いる場合、抽象的なアイディアの整理や言語化において、AIがどこまで役立つのかという疑問も湧きました。企業の経営課題や公共サービス、交通、住居、教育、金融、軍事といった様々な領域でデザイン思考を応用することを考えたとき、AIをどのように効果的に活用すべきか、改めて考える機会となりました。グループワークの中で、他の受講生からは「AIでは生み出せない発想を引き出すためにAIと対話する」という意見も伺い、多様なアプローチが考えられることに大変興味を覚えました。 課題で得た自信は? デザイン思考入門の学習を通しては、毎回の課題回答や振り返りが、言語化のトレーニングとして非常に役立ったと感じます。業務での活用を意識し、各課題に対して即座にスピード感を持って回答することで、クライアントとのやりとりを想定した実践的なエクササイズにもなったと思います。これにより、自分の言語表現力が磨かれるとともに、生成AIの能力に対する素直な感動と共に、実際に試してみたいという気持ちが芽生えたのは、今回の学習の大きな成果といえるでしょう。

「表 × 金」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right