データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

データ・アナリティクス入門

挑戦と発見のデータ学習録

対象比較の意義は? 分析の真髄は、対象がある場合とない場合の値を比較する点にあります。たとえば、ある評価は対象が存在するときの値と存在しないときの値の差で示されます。さらに、評価する対象の選び方も非常に重要であり、ライブ授業で学んだように、対象を選ぶ際には「アップル・トゥ・アップル」の比較や生存者バイアスに注意する必要があります。今後はこれらの点を常に意識して取り組んでいきます。 反ユダヤ対策の現状は? これまで、反ユダヤ主義をなくす取り組みは、行動前のアメリカにおける宗教犯罪における割合(ユダヤ教に対して69%)や、国民の反ユダヤ主義に対する無関心の割合(58%)に着目して行われてきました。今回、ある協力組織と連携した取り組みの成果は、次回のデータ分析においてユダヤ教に対する犯罪の割合と国民の無関心の割合を確認することで判明するでしょう。これらの結果を踏まえ、取り組みの内容を適宜見直すことになります。 実務で学んだことは? 私たちの学びは、データの収集・加工を自ら行い、現状把握や課題の特定、そして解決策の提示を目指すものです。しかし、実務では主に協力先のデータ分析結果を利用して業務を進めています。もちろん、この講座ではさまざまな試行錯誤を行っていますが、業務に関連する際はこれまでの手法に頼ることが多かったのです。以上でよろしいでしょうか。

リーダーシップ・キャリアビジョン入門

エンパワメントで高める成長の秘訣

どうして余裕が必要? エンパワメントを効果的に行うためには、まず自分自身に余裕を持つことが重要であると学びました。忙しいときや余裕がないときに仕事を任せがちですが、それでは十分なサポートができません。求めるクオリティの成果を得るためには、適切な質問をし、相手の知識やスキル、経験をしっかり把握した上で、不足している情報をどのように提供するかを考慮する必要があります。このような対話を重ねることで、業務が常にストレッチゾーンにあるようにしたいと感じました。 どんな経験を活かす? まずは自分自身の余裕を確保することを意識し、何をエンパワメントできるかを常に考えることが重要です。エンパワメントを行う際には、過去の経験を振り返りつつ、必要な情報やサポートを慎重に見極めて進めていく必要があります。また、目的や目標を明確にし、共有するべき着地点を言語化することも大切だと考えます。 いつ進捗を確認する? 毎朝、エンパワメントの内容について考え、その計画を立てることを習慣にしたいです。質問すべき項目を5つ以上考えておくと良いでしょう。また、依頼した仕事の途中経過をいつ、どのタイミングで確認するかも計画に組み込んでおくことが重要です。相手を労りつつ、コンフォートゾーンから一歩踏み出したストレッチゾーンを目指す業務の負荷についても常に考慮していきたいと思います。

戦略思考入門

差別化戦略で顧客価値を見極める

差別化のポイントをどう理解する? 今週は差別化のポイントについて学びました。自社がどの戦略を取るべきかを決定するために、次の4つの視点を重視すべきだと理解しました。1つ目はターゲット顧客の設定、2つ目は顧客ニーズの把握、3つ目は競合他社の施策の理解、そして4つ目が実現可能性と継続性です。 経験から学んだこととは? 実践演習では、製品やサービス、チャネルなどの項目で情報を分けることで、自社や競合、顧客層、顧客ニーズを整理しやすくなりました。しかし、私自身の切り口が細かすぎたため、切り口の工夫が必要であると感じました。 顧客視点を業務にどう活用するか? 私の業務では競合との差別化を考える機会は少ないのですが、「顧客にとって価値があるのか」「実現可能性や持続可能性について検討したか」といった視点は、自らの業務に活用できると確信しています。この考え方を取り入れることで、常に顧客やトレンドを見直しつつ、他者にも説得力のある施策を決定できると考えています。 改善策をどう進める? また、中期プランおよびコールセンターの満足度改善計画を立てており、出てきた改善策に対して、「顧客を誰とするのか」「顧客にとって価値があるのか」「実現可能性や持続可能性について検討したか」を自分自身やメンバーに問いかけ、言語化および視覚化を進めていきたいと考えています。

データ・アナリティクス入門

明確な結論が導く成長

解決すべき問題は? 当日演習中、解決したい問題を明確にすることが、自分の実務において不足していた点であると実感しました。結論のイメージを持つことで、分析すべき項目の選定やアウトプット時のグラフ選択など、躓きやすい箇所の解決につながると感じました。 問題点の見極めは? 演習では、全体から問題点の箇所に焦点を絞っていくプロセスが示され、実践経験と重なる部分が多くありました。実務において、これまで問題解決の各ステップの「どこ」に位置しているかを意識していなかったため、今回学んだプロセスを通して、自分の現在の位置を客観的に捉えることの重要性を再認識しました。 グラフ選択はどうする? また、グラフの選び方に関しては、まずその種類や役割(たとえば、差異を伝える、比率を示すなど)を理解することが必要です。仮説や伝えたいメッセージを明確にした上で、直感的にピンとくるグラフを選ぶこと、そして伝える相手の好みや傾向を把握しつつ、複数のグラフを比較検討するアプローチが有効だと感じました。 どう改善するの? 実務を振り返る中で、学んだステップに照らして「できていること」と「改善できること」があると実感しました。全てを完璧に実行するのは難しいですが、ひとまず一度しっかりと振り返り、今後の業務遂行の効率化に活かしていきたいと考えています。

データ・アナリティクス入門

理想と現実、ギャップを超える力

合意形成はどう進める? 問題解決に取り組む際は、まず「理想のあるべき姿」と現状とのギャップを整理することが重要です。表面的に見つかった問題をそのまま解決していくのは、時には運に任せる側面があり、必ずしも大きな影響を与える要因とはなりません。そのため、まずは現場の関係者と「理想のあるべき姿」についてしっかりと合意形成を図ります。もし現場側に理想がなければ、関係者と共に理想の策定に取り組む必要があります。 目標設定は本当に明確? 自身の業務においては、現場で設定される各部門の達成目標=理想を出発点とし、そこから現状とのギャップを明確に報告する役割があります。しかし、現実には現場で理想が設定されていなかったり、目標が曖昧である場合が多く、部署として理想について十分に把握できず、ギャップを正確に報告できていない現状があります。 理想共有はどうやる? このため、まず現場の「理想」を共有し、正確に把握することが重要です。もし、現場側で理想が不明確であれば、定量的な目標の設定を提案し、協力して策定することが必要です。次に、現場の理想と実際の状況との間に存在するギャップをしっかりと報告するステップに移ります。 連携で成果は得られる? 以上のプロセスを実践することで、現場と部署が連携し、理想に近づくための効果的な問題解決が進むと感じています。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

クリティカルシンキング入門

数字の楽しさと効果的な使い方発見!

数値をどう分解する? 数値を分解することの楽しさが増し、明確に理解できるようになりました。また、分解したデータを表にしてわかりやすく伝える重要性も実感しました。分解する際には、MECE(モレなく・ダブりなく)や層別、変数別、プロセス別などのフレームを意識することが大切です。 新たな知識をどう活用する? この知識は、来期のプラン作成や今年の成果分析、自店舗の顧客傾向を把握する際に役立ちます。例えば、店舗のPLを分析する際や、与えられた時間内に業務が終わらない時にプロセスを分解することで、問題点を特定することができます。また、チームメンバーに特定のカテゴリーで売上を伸ばすことをコミットする際も、各店舗の傾向を商品で分解して機会点を見える化することで、目標設定やプランニングがスムーズに行えます。 苦手意識をどう克服する? これまで数字の分解に対して苦手意識があり、必要最低限にとどめていた部分もありましたが、今回の学びを通じて積極的に数値を分解する経験を積みたいと思います。直近では来期のチームプランを作成するため、今期の成果を分解して強みや機会点を明確にし、チームメンバーが視覚的にわかりやすい資料を作成する予定です。また、顧客調査の結果をMECEを意識して分解することで、各店の機会点を把握し、チームメンバーに共有することも計画しています。

戦略思考入門

実態把握が生む経済戦略のヒント

なぜ実態把握が大切? 規模の経済について学んだ中で、単純に大量生産して稼動率を上げるだけでは十分ではなく、まず自社の実態を正確に把握し、整理することの重要性を再認識しました。 他社状況はどう把握? また、規模の不経済に関しては、依頼先や先方の状況、さらには各社の資産状況や稼動状況をしっかり把握した上で検討する必要があると感じました。 資源活用の秘訣は? さらに、現有資源の他分野への有効活用や、範囲の経済の視点から関連部分を抽出するなど、柔軟な視点をもって検討を進めることが求められます。 部品流用はどう見る? 商品開発においては、コストが最重要項目であるため、同一の部品や仕組みの流用可能性を考えることが大切です。しかし、単にコスト面だけに目を向けるのではなく、そうした流用が商品の価値や魅力にどのような影響を与えるかも同時に検討しなければなりません。 整合性はどう保つ? 各商品の検討では、自分の担当業務だけでなく、関連部分との整合性を確認しながら、最も適した手法を選ぶことが必要です。1つの部品においても、現状の位置づけを把握し、再利用すべきかどうか、または何を第一優先にするかを定量的に判断することが重要だと考えます。 実例はどう参考? 皆様が実際に体験された事例があれば、ぜひ参考にさせていただきたく思います。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

アカウンティング入門

カフェ体験で学ぶ損益の秘密

カフェの例は何を示す? カフェという身近な存在を例に学べた内容が、より具体的にイメージできる形で伝わり、理解が深まりました。また、損益計算書が5つの利益から成り立っていることを再認識しました。それぞれの利益の意味や役割が異なり、本業の儲けと全体の収益では扱いも違うと理解していましたが、図解によって言葉と概念が結びついた点が非常に印象に残りました。会社の収益源やそれを生み出すための努力を、ストーリーとして考えられることの大切さも学びました。 PLと赤字はどう見る? 業務においては、海外子会社の管理業務の中で毎月のPLを確認し、5つの利益がどのように変動しているかを前月比や前年比で把握し、変化の要因を分析できる力を身につけたいと考えています。また、動画の冒頭で触れられていたように、「赤字」と一口に言っても、最終赤字なのか営業赤字なのかで意味が大きく異なるため、議論の際に速やかに用語の意味を理解できるようになりたいと思います。 数値比較で何が分かる? さらに、苦手意識を克服するために、まずは数値の動向をしっかり把握することが重要だと考えています。自社のPLだけでなく、他社の数値にも目を向け、5つの利益の動きを比較することで、自社子会社のPLにおける違いや問題点、特に各利益間の差に起因する問題を具体的に分析できるようになりたいです。
AIコーチング導線バナー

「業務 × 把握」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right