データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

戦略思考入門

やめる勇気が未来を変える

日常に戦略思考はどう? 戦略的思考のフレームワークは、ビジネスだけでなく日常生活にも大いに役立ちます。まず自分自身や組織の使命や目標を明確にし、目指すべき方向性やその理由を検討することが重要です。 強みと弱みはどう? そのためには、自身や組織の強みと弱みをしっかりと把握し、政治、経済、社会、技術といった外部環境の変化を十分に考慮する必要があります。こうした分析は、競合との差別化を図るための効果的な戦略の構築に大きく貢献します。 何をやめる勇気は? また、戦略的思考においては「何をしないか」「何をやめるか」という決断も非常に重要です。多くの場合、全てを実現しようとするあまり、不要な取り組みを続けがちですが、あえて「ノー」と言えるかどうかが、成功へのカギとなります。 合意はどう進む? 私自身、現在の職務でマーケット分析や戦略計画を行う際に、このフレームワークの有用性を実感しています。全体を俯瞰し、外部環境や関係者の視点を広く取り入れることで、より客観的な判断が可能になりました。しかし、一方で複数の関係者の合意を得ることは簡単ではなく、特に「どの取り組みを見送るか」という決断には大きな抵抗が伴います。 実行戦略は何が鍵? それでも、差別化戦略を成功させるためには、実施する内容だけでなく、あえて取り組まない内容を明確にすることが不可欠です。このような中で、優れたリーダーシップと変革を推進するマネジメントスキルが求められます。 チームの未来はどう? 製品やサービスの廃止に対する抵抗感を乗り越えるためには、戦略計画の基本に立ち返り、チームメンバーとともに現状と目標を明確にするセッションが大いに役立ちます。長期的な視点と、何を捨てるべきかという明確な戦略を組み合わせることで、メンバーは全体像を捉え、将来の目標に集中しやすくなると感じています。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

戦略思考入門

捨てるからこそ見える未来

戦略の捨て方は? 今週は「戦略における捨てること」について学び、実践演習では営業先の売上に関する情報を用いてROIを算出し、優先度を下げるべき営業先の事例を分析しました。 苦手意識の理由は? 講義では、日本企業が捨てることに苦手意識を持っているという話があり、自社にもその傾向を感じると同時に、ファーストリテイリングや日立製作所のように、選択と集中を積極的に進めて収益性を高めている事例もあると理解しました。 資本コストの影響は? また、上場企業においては、資本コストを意識した経営が求められる中、捨てる選択がますます重要になるのではないかと考えるようになりました。 取引先の扱いは? 業務上、複数の取引先とやりとりする中で、要求が細かく、契約書以上の依頼をするクライアントが一定数存在するため、こうした顧客情報は社内で共有し、非積極顧客として管理していく必要があると感じています。 修正対応の基準は? 納品後の修正対応については、納品内容に問題がある場合は当然対応するものの、問題がない場合や細かい点に関しては、すべてを無条件に受け入れるのではなく、一定の姿勢を保つことも大切だと考えています。 顧客リスト整備は? そのため、積極顧客リストと非積極顧客リストを作成し、営業部門と連携して、非積極顧客の案件は基本的に受注しない方針を進めていきたいと思います。 CADはどう外注する? さらに、建設コンサルタント業界では3D CADの導入が進んでおり、現状、社内人員で作成しているものの、業務フローを鑑みると外注に依頼する方が現実的と考えます。今後は、社内で人材を育成するのではなく、3D CADを扱える外注先の開拓や、必要に応じて外部企業の買収などを通して、対応力の向上を目指していく必要があると感じました。

クリティカルシンキング入門

分析の切り口を変えて、新たな発見を!

データ分析で解像度を高めるには? データは受け取ったままではなく、一手間加えることで解像度が上がります。絶対値だけでなく、相対値でも数字を出して比率を確認し、数字はグラフ化することで視覚的に課題を見つけやすくなります。また、取り扱う情報が売り手側か顧客側かで分析の視点が変わることを認識しておくことが重要です。 偏りを防ぐためにはどうする? 基本的に売り手側の情報から分解することが多かったため、偏った視点だということを意識しなければなりません。切り口は時間、人、手段など様々な角度から分解し、可能な限りMECE(Mutually Exclusive, Collectively Exhaustive)で分解することで、ダブりなくモレなく網羅的に分析が可能になります。 新たな課題を発見する方法は? 事業部の売上を分解する機会がよくありますが、売り手側の情報に偏らないように注意が必要です。慣れた分解手法を使うことが多いため、異なる視点や切り口、深掘りをすることで、今まで見えていなかった課題を見つけることができるでしょう。 分解のブレを防ぐには? 事業部の売上や部署の売上、メニュー毎の売上、顧客毎の売上など、分解できそうな要素は多くありますが、まず最初に全体の定義を決めることで分解のブレを防ぎ、有効に活用していくことが大切です。毎週や毎月のように分析を行う機会があるため、週報や月報でこれまでと違った切り口で分解を試みてみようと思いました。 異なる切り口での分析の効果は? これまで「課題はこれだ」と決めつけていた部分も多かったため、本当にそうか疑い、別の切り口で分解することで新たな課題を特定できると感じています。早速今回の週報から分析と分解を活用し、全体の定義を決め、MECEで考えるよう心がけ、ダブりやモレのない進行を目指します。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

思考の深さが生む経営革新

今回変更する振り返り文章 本質は本当に大切? 本質やメカニズムの重要性を理解するための課題に取り組みました。単に耳にした言葉を引用するだけでは、相手を説得することは難しいと感じました。今回の取り組みでは、規模の経済性を活かすためには、「生産量を増やす」や「原材料の発注量を増やす」といった基本的な提案だけでなく、深く考える必要があると学びました。この経験を通じて、多角的な思考の重要性を改めて実感しました。 考え抜く意識は十分? 過去の学習から、「考えて考え抜くこと」が最も重要であると理解しました。規模の経済性については、コスト低減を考える際、一部のコストだけを抑えるのではなく、トータルコストの低減を目指す必要があります。例として、コスト単価を下げて発注量を増やすと、保管料が増える可能性があります。全体としてコストが抑えられているかを確認するため、まず全体のコストを把握し、細分化して分析することが重要です。そして、どこのコストが下がれば他のコストが上がる可能性があるか、全体を俯瞰する視点が必要です。 コストは細分化できてる? 規模の経済性を考えるうえでは、コスト全体を把握し、できる限り細分化します(事業別、商品別などの軸での細分化)。次に、考えられるコスト低減策を洗い出し、全体を俯瞰して総合的に判断することが大切です。この際、変動費・固定費も意識して細分化を行います。 習熟度は十分? 習熟度効果については、まず業務内容にかかる時間を洗い出します。時間がかかる業務に対しては、マンパワー不足なのか、習熟度不足なのかを検討します。マンパワー不足の場合は生産性の向上を目指した人員配置を考え、習熟度が不足している場合は、慣れや経験を積む時間が必要です。さらに、教育不足であれば育成も視野に入れることが求められます。

戦略思考入門

旅行業界での経済性を徹底分析!

経済性の詳細をどう理解する? 「規模の経済性」「範囲の経済性」「習熟効果」「ネットワークの経済性」という概念は聞いたことがあったが、その詳細については十分に理解していなかった。特に、規模の経済性については、有形商材を取り扱うメーカーに限定されると考えていた。しかし、旅行会社でもフライトの座席数、ホテルの部屋数、車両の数などの仕入れにおいて、規模の経済性を活用できる可能性があることに気づいた。ただし、旅行業界ではオフシーズンとピークシーズンの差が大きいため、慎重な活用が必要だと感じた。 なぜ多様な事業展開を? さらに、自社の中期経営計画において旅行以外の事業にも触れられており、なぜ自社がそれほど多岐にわたる事業を展開するのか疑問に思っていた。旅行の基本は「食」「移動」「宿泊」であり、これに加えて物販やガイドなどの人材を含む多様な事業を展開することができる。これがまさに範囲の経済性と習熟効果の結果だと理解できた。 インバウンド事業の課題とは? 訪日旅行(インバウンド)事業においては、桜や紅葉の季節がピークであり、それ以外はオフシーズンとなる。このため、年間を通して有利なバス車両数やホテルの部屋数の仕入れ交渉が難しいことが分かった。一方で、自社の国内旅行事業は他社と比べて強くはないが、GWやお盆、年末年始などのピークシーズンが訪日のオフシーズンと重なるため、これを活かして一緒に仕入れ交渉できる可能性を模索している。 経営資源の活用と新規事業 このように、自社の中期経営計画で掲げられていた旅行関連事業や非旅行関連事業について、具体的にどのような経営資源を用いてシナジーを生み出しているのかを考察する。また、既存の経営資源を用いていない新規事業について、どのような方針で取り組んでいるのかも考える必要がある。

戦略思考入門

差別化戦略を深めるための新たな視点

情報収集の重要性とは? 講義の設問では、自社と他社の強み・弱みを理解することを前提に、差別化要素を検討していました。この点に関しては、設問中で簡潔に述べるに留まりましたが、日常的に情報を取得し続ける習慣がなければ、差別化の検討に必要な情報の蓄積が難しいと感じます。差別化を検討するにはかなりの事前準備が求められることを痛感しました。 業界を俯瞰する力をどう養う? 加えて、設問のアドバイスを通じて、顧客として食事をする場所の選択肢を考慮する際、焼肉業界だけでなく他の業界にも目を向けることの重要性に気付かされました。自分の回答中、業界内の情報ばかり考えていた反省があり、もっと俯瞰して見る力を養う必要があると感じました。 戦略選択の理由をどう説明する? ポーターの3つの基本戦略は理解しやすく、自社の既存事業が「コストリーダーシップ戦略」と「集中戦略」に位置付けられていると捉えています。現在関わっている新プロジェクトでは「集中戦略」を最優先し、次いで「差別化戦略」を考慮しています。しかし、なぜその戦略を採用しているのか、またその戦略のリスクは何なのかを体系的に説明する準備がまだ不足していると感じました。今後は、これまで採用してきた戦略のリスクにも目を向け、計画を修正していく必要があります。 具体的な差別化の手順は? すぐに取り組むべきこととして、3つの基本戦略に基づいて既存の情報を整理し、戦略のデメリットに対する他社の動向を把握することがあります。また、技術チームとは技術要素における現状の差別化要素の整理を行い、ビジネスチームとはSWOT分析やVRIO分析を実施し、ターゲット顧客から見た現状の差別化要素を整理して、他の代替サービスと比較して優位性を検討することにより、差別化をより具体化していきたいと思っています。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

クリティカルシンキング入門

試行錯誤が切り拓く学びの未来

本質をどう見極める? データ分析では、思い込みや決めつけを排除し、常にMECEの視点で多角的に検討することが基本です。入場者数の分析を通して、一つの要因だけでなく、他にも潜む原因が存在することを実感しました。また、すべての切り口を機械的に網羅するのではなく、目的に沿った仮説を立てながら実際に手を動かし、トライ&エラーを重ねるプロセスが非常に重要です。エラーは「失敗」と捉えるのではなく、「要因がなかった」と前向きに解釈することが大切です。 視点をどう広げる? データをグラフ化する際には、分解のレンジを変えることで新たな視点が見えてくるため、施策検討の方向性が変わる可能性に注意が必要です。また、報告の際は相手に何を伝えたいかを明確にし、その目的に合わせた見せ方を工夫することが、効率的かつ効果的なコミュニケーションにつながると感じました。 分析の深掘りは? 例年行っているプロジェクト業務の振り返りのためのアンケート分析においては、これまでの単なるデータ整理にとどまらず、本講座で習得したスキルを活用したいと考えています。過去の資料では、単なる数字の羅列に留まっていた部分が目立ちました。今回の学びをもとに、より深い考察と次回以降のプロジェクトに向けた提案や改善策の検討を進める予定です。 情報共有は進む? また、まず全体像を把握することを意識しながら、初期の段階で上位者へ超速報としてインプットを行い、今後実施する分析の切り口や方向性を共有したいと考えています。これにより、最終的な分析結果に対する手戻りを防ぎ、効率的な業務遂行が可能になると期待しています。さらに、今後は自分自身だけでなく、チームメンバーへの分析依頼にも対応できるよう、本講座で学んだ内容を基盤として、サポート体制の強化にも取り組んでいきたいと思います。

「分析 × 基本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right