データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

データ・アナリティクス入門

目的とデータがひらく未来

目的は何でしょうか? 今回の講義を通して、まず目的を明確にすることの大切さや、その目的に沿って適切な情報を集めること、そしてデータを加工し比較することで初めて分析が成立するという基本的な考え方を学びました。 難問の比較ってどう? また、難しいテーマの比較においては、直接的な比較だけでなく間接的なアプローチも可能であり、柔軟な考え方が求められると実感しました。特に、愛の価値の算出方法に触れた際は、自分の考えの枠を超える新たな視点に出会い、非常に勉強になりました。そして、これまで耳にしていた「Apple to Apple」という言葉の意味を実体験に基づいて理解することができ、当時の意図にハッとする瞬間がありました。加えて、どのデータが適切かという判断には個人差があることを実感し、さらなる経験の積み重ねが重要だと感じました。 学びはどう活かす? 今回の学びは、商品の販売企画やプロモーション活動にも役立つと考えています。実際、講義を受けた後からは、販売企画の場面で比較を意識するようになり、データ分析を通じて「新しいことがわかる楽しさ」を感じ始めています。 数字以外の視点は? さらに、来週からは数字以外の情報を分析する予定であり、どのような視点で分析を進めるのかが楽しみです。また、得られた情報を効果的に伝える方法についても興味があります。グラフや表、あるいは絵など、さまざまな手法がどのように利用されているのか、また絵を用いる場合にはどのようなアイデアが生み出されるのか、実際に皆さんのお話を聞いてみたいと思います。

データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

戦略思考入門

差別化戦略で未来を切り拓く方法

市場環境はどう見る? 差別化戦略を進める際には、いくつかの重要な点を念頭に置く必要があります。まず、見落としや抜け漏れを防ぐためにフレームワークを活用し、市場環境を正確に把握することが重要です。また、差別化に際しては、ターゲットとする顧客層を正確に設定する必要があります。顧客の視点に立って考え、競合企業がどこになるのかを判断することも重要です。さらに、施策を持続可能で実施可能なものにするために、実行可能性についても検討する必要があります。 差別化は本当に必要? また、ポーターが提唱する3つの基本戦略を考慮し、本当に自社が差別化戦略をとる必要があるかを判断することも不可欠です。差別化戦略を選択する場合、VRIO分析を活用しながら進行させることが求められます。 後発者はどう戦う? 私の現在の仕事に当てはめると、新たに進出しようとしている市場において、我が社は後発者となります。そのため、市場分析を念入りに行い、ターゲットとなる顧客層を明確化した上で戦略を策定する必要があります。現状のイメージでは、差別化戦略あるいは集中戦略を検討することになると考えられるので、VRIO分析を用いて自社の資源を評価し、意思決定を行っていきたいと考えています。 収益基盤の課題は? 現在は、収益化に向けた基盤構築の段階にあります。しかし、未来を見据えた市場分析を行い、顧客ターゲット層を決定する時期が訪れた際には、フレームワークを活用した分析を根拠として明確に提示できるよう準備を進めておきたいと考えています。

アカウンティング入門

カフェから学ぶP/Lの賢い極意

損益計算書をどう捉える? 損益計算書(P/L)の基本構造や読み方を学び、改めて整理することができました。初めはややこしい印象を受けましたが、シンプルな構造であることが理解でき、すんなり納得できました。 カフェ事例は何を示す? カフェの事例を通して、提供する価値やそれに伴う事業活動が変わると利益構造も変化することを実践的に捉えることができました。売上の増加とコスト削減によって利益を生む方法ですが、どちらの場合も「何を提供価値とするのか」を明確に考えることで、実施すべきことや避けるべきことが見えてきます。そして、その判断はコンセプトや置かれている状況によって変わるということが学びになりました。 自社商品の利益構造は? まず自社商品(飲料)のコンセプトや提供する価値から、どのようなP/L構造になっているかを確認したいと考えています。商品が持つ提供価値やターゲット設定、ビジネスの考え方とP/Lを結びつけ、先に学んだチェーン店の事例のように分析していく予定です。今後の戦略を考える上でも、各ブランドが利益を生む仕組みを理解したうえで、ブランド全体としての事業のP/Lを分解し、読み解くことが重要だと感じました。その成果を組織内で共有する予定です。 販促費は何を左右? 売上増加のために販促費を増やす判断をすることがありますが、結果として利益率が低下する場合も見受けられます。このため、販促費を増やす際の効果の程度や判断基準について、どのように考慮すべきか知りたくなりました。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

戦略思考入門

IT企業向け経営戦略の新たな視点を学んで

差別化の新たな視点とは? これまで行ってきた「差別化の検討」では、「他社製品にはない新しい機能」や「他社サービスにはない新しいサービス」、「当社独自の技術やノウハウ」といった限定的な考え方しか持っていなかったことに気づいた。これらがあれば「IT企業としての差別化になる」と考えていたからだ。しかし、変化の激しい業界で継続的に自社の優位性を保つためには「VRIO」といった分析(評価)が必要であることや、ポーターの「3つの基本戦略」を知ることができて良かった。また、「差別化」を考えるのは難しいものであり、「集合知」や「外部の力」の活用、さらには「ライバルを意識し過ぎないこと」が大事だという話が印象的だった。 VRIOを人材戦略にどう活用? 次期中期経営計画において「VRIO」に当てはめて考えてみたいが、現段階では各要素に対するイメージが湧いておらず、自社の課題が膨らむばかりで途方もない感じがしている。そのため、時間がかかりそうだし、個人としても会社としても何か結論を出すのは相当難しい気がする。まずは、身近な領域として自部門の担当領域である人材採用戦略において「VRIO」を活用してみたい。 外部の力をどう取り入れる? 具体的には、自身と部員(採用担当)の考えを書き出し、「集合知」を活用する。また、親会社の採用活動を参考にし、自社に足りない部分(活動)を洗い出し、それらをどのように埋められるか(差をなくせるか/代替アクションがあるか)考えてみたい。これが「外部の力」の活用である。

リーダーシップ・キャリアビジョン入門

リーダーシップ変革への挑戦!

指示の基準を変える理由とは? これまで私は「仕事の難易度」や「任せる人のスキル、経験」といった基準で指示を出していました。しかし、「環境要因」や「適合要件」という観点から再考することで、より深い理解が得られると感じています。また、マネジリアルグリッドという分析方法を知り、自分自身だけでなく、部下や同僚、上司の理解にも役立つと実感しました。リーダーシップとは直感に基づくものが多いと思っていましたが、基本的な理論を学ぶことで基礎力を高めることが重要だと考え直すことができました。 目標達成に向けた具体的なアプローチは? 下半期が始まる中で、具体的な目標を立て、その取り組みの必要性を明確に説明することで、変革を推進する姿勢を示したいと考えています。その際、各目標達成に必要な「環境要因」と「適合要件」を検証し、条件適合理論に基づいたリーダーシップを使い分けていきたいです。また、営業部門として達成すべき目標が多いため、メンバーにリーダーとしての役割を配分する必要があります。今回学んだ理論を活かし、繰り返し説明することで自分自身のスキルとして身につけていきたいと考えています。 変革を実現するための方法とは? 直近の下期方針説明会では、中長期ビジョンを示し、変革を促す取り組みを打ち出すつもりです。変革を実現するためには、指示型でゴールを設定し、具体的な活動を決定することが重要です。また、定期的な会議や1対1のミーティングを実施し、状況確認を行う中で、褒めることを実践していきます。

戦略思考入門

視野広げる!実践で磨く戦略術

戦略の真意は何? 戦略とは、効率よく目的を達成するために何を行い、何を控えるかを選択することですが、現状では日々の業務をただ繰り返すだけになっており、広い視野で全体を見据えた判断や、長期的な視点に基づいた判断ができていないと感じています。 講座のポイントは? 今回の戦略思考入門の講座では、ビジネスフレームワーク、基本戦略、事業経済性などについて学びました。単に各理論を知っているだけでは十分な戦略には結びつかないため、自分の業務に具体的な状況として適用できるよう、理論の考え方を深化させたいと思います。 売場戦略はどう? また、売場作りにおいては、POSデータに現れる数字だけでなく、その背景にある顧客の状況や自社の状態も重視し、自店舗の戦略に生かしていきたいと考えています。従来は、売れている商品=お客様に支持される商品という結論に至っていましたが、この方法では現状のニーズは把握できるものの、長期的には同じ手法に固執して停滞する恐れがあると同時に、会社全体の経済性も十分に考慮されていませんでした。 地域経営の今後は? 今後は、より広い視野で地域社会にとって必要とされる店舗運営や、会社全体の利益向上に寄与する戦略を構築していくことが重要だと認識しています。自店舗や地域の状況をフレームワークを用いて分析し、その結果を基に各行動に反映させることで、POSデータの数値も長期的な視点や地域のお客様、会社全体の利益につながるかという観点で再評価して取り組んでいきたいです。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

「分析 × 基本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right