データ・アナリティクス入門

問題解決力を磨くための新たな視点

問題解決で大切な視点は? 問題解決のプロセスにおいて、重要なのは「あるべき姿」と「現状」のギャップを意識し、その上で優先度や重要度に基づいて取り組むか否かを選択することです。このステップは一方通行ではなく、行き来することもあります。定量的な評価を行う際は、単に数値の変化に注目するだけでなく、現場で何が実際に起きているのかを確認することも大切です。また、人に説明する際にはビジュアル化が有用です。 課題設定でのポイントは? 問題解決の際には、課題の設定で「あるべき姿」が明確にされているかを確認します。実務に取り組みながら、今行っている作業が問題解決のどのステップに当たるのかを常に意識することが求められます。定量情報に偏ることなく、現場の状況や定性情報も取り入れ、適切な切り口や仮説を設定します。 分析計画で留意すべきは? 分析に先立って行う分析計画表には、「あるべき姿」とそのギャップ、各問題解決ステップにおける具体的な作業を記載します。多面的なデータ分析を行い、状況に応じて計画の修正を柔軟に行うことが求められます。また、MECE(漏れなく重複なく)にあまりにもこだわるよりは、意味のある切り口や仮説を意識しながらデータに向き合うことが重要です。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

データ・アナリティクス入門

継続の秘訣は仕組化にあり

継続の鍵は何? これまでの学びの振り返りや今後の意気込み・取り組みについて考えた結果、結局は「いかに仕組化して継続できるか」が鍵だと感じています。 取組内容は? 課題で記したとおり、以下の3点に取り組んでいきたいと思います。まず、パワーポイントを用いて自分の学びを整理してまとめます。次に、使えそうなフレームワークをエクセル形式に変換し、デスクトップに保存しておくことで、漏れなく効率的に要因分析や仮説構築に役立てたいと考えています。さらに、各種企画業務(分析、調査、議論、仮説構築、意思決定など)に集中できるよう、日々の業務の効率化にも注力していくつもりです。 なぜエクセルなの? 特にエクセルフォーマットにしてデスクトップに保存する枠組みは、「なぜそれが起こっているのか?」という問いに対して、常に使えるツールとして位置づけたいと考えています。学びの内容をパワーポイントでまとめ、エクセルでフレームワークを整備する作業は、受講者画面が利用できなくなる前に、週末などを活用して進める予定です。 共有準備は? また、学びのまとめについては、部署内のミーティングで共有することを目標とし、6月中に実施できるよう計画的に準備を進めていきます。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

戦略思考入門

点を超えて線を読む力

点と線の捉え方は? 全体を通して、各手法を単なる点として捉えるのではなく、線としてしっかりと分析し、それを次の分析へのインプットにしていくことが重要であると再認識しました。また、頭では理解していても、つい答えありきで進めてしまう癖があるため、有識者と共に、普段からどのような分析手法を用いているか、また答えありきになっていないかをクロスチェックする必要性を感じています。 計画と分析はどう調和? 特に来期の事業計画の立案時に、この分析の姿勢が非常に役立つと考えています。たとえ綿密に分析して計画を策定しても、現場の都合や関係性によって思いどおりに進まないことが多いのが現実です。しかし、自社のメリットを明確に言語化し、他者にも理解していただける分析を行う技術を身につけるため、日頃から学んだ手法を自然にアウトプットできるように心がけたいと思います。 外部インプットは必須? また、PEST分析などで社会情勢を捉えるには、個人だけでは限界があるため、外部からのインプットに頼ることも重要です。某IT企業のレポートなど、信頼性の高い資料を参考にする一方で、ほかにも有用なレポートがあれば共有していただけると、大変助かります。

データ・アナリティクス入門

ロジックが導く理想の一歩

講義の4ステップとは? 今回の講義では、問題解決の基本となる「明確化、特定、分析、立案」の4ステップを学びました。現状とあるべき姿の違いを、数字で具体的に示すことの重要性も理解できました。また、分析手法としてロジックツリーや層別分解、変数分解、そして「もれなく、ダブりなく」というMECEの概念にも触れ、今後の実務での応用を意識するようになりました。 タブロー普及策は? タブローの導入にあたっては、社内での普及方法について考える必要があります。タブローは主に営業部門と管理部門で利用される予定ですが、現状では初期導入段階のため、タブローの知識やスキルを持つ人材が不足しています。そのため、どのように準備を進め、短期間で必要な教育を実施するかが課題となっています。 実務に生かすには? BI分析やデータ可視化の取り組みを進める中で、理解を深めるためには計画的な学習やスキルの向上が不可欠です。講義で学んだプロセスをもとに、現状とあるべき姿をどのように区分し、具体的な対策を立案するかのイメージが湧いてきたと感じています。しかし、仕事の現状と理想の状態を明確に区分する点については、まだ少し分かりにくいという実感もあります。

データ・アナリティクス入門

基礎定着から実務戦略への挑戦

ライブやグループの難点は? WEEK6のライブ授業では、WEEK1からの振り返りができたものの、まだ基本的な知識が十分に定着していないと感じました。グループワークで自分の意見を述べる際、思いついたことをうまく言葉にできず苦労した場面もありました。「分析は比較なり」や「視覚的にデータの効果的な見せ方」といった考え方の重要性を再認識し、基本的な知識の定着と実務での活用を継続して、熟練度を高めていきたいと思います。 分析と戦略はどう? 私は現在、グループ全体および各店舗のデータ分析や戦略策定を担当しており、来年度の計画立案の時期に入っています。今回の学びを最大限に活用し、戦略立案や目標設定に反映させるとともに、各店舗でのデータ収集、分析、そしてそのデータに基づく戦略立案に生かしていく所存です。 次の学びはどう進む? 今後は、データアナリティクス入門で学んだ知識をしっかり定着させるため、「定量分析の教科書」を活用して理解を深め、実務での活用を通じて実践力を向上させていきます。また、4月から受講するクリティカルシンキング入門を通して、客観的かつ多角的、論理的な思考力を養い、データ分析や戦略立案に役立てたいと考えています。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

データ・アナリティクス入門

問いの立て方で学びを深めた講義

比較の基本を理解するには? 分析の基本は、比較です。また、その比較対象を適切に選ぶこと(Apple to Apple)が重要です。本講義とは直接関係ありませんが、ライブ授業と動画学習では問いの立て方が全く異なると感じました。特に、自分は具体的な問いの立て方ばかりをしていたため、久しぶりに抽象的な問いをグループワークで考えることが新鮮な学びとなりました。これは非常に良い機会だったと感じています。 日々の分析で意識すべき点 日々さまざまな分析を実施していますが、比較対象を慎重に選ぶことを実践していきます。その実践の中で課題に感じたことを、常に解決していく姿勢を持ち続けます。具体的な場面が浮かばないこともありますが、これも基本的なこととして心に留めておきます。 多様な問いの立て方が必要? Q2の通り、分析は日々実践しています。そして、その中で本講義で学んだことを実践しながら課題に対する行動計画を常に考えます。Q1の通り、今回は「問いの立て方」に気づきがありました。特に、日常的に従業員に対する問いが具体的なものばかりに偏っていたことを反省しています。これを是正し、従業員に多様な学びを提供できるようになりたいと思います。

データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

「分析 × 計画」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right