クリティカルシンキング入門

クリティカルシンキングで自分を見直す方法

なぜ客観視が必要? クリティカルシンキングは、自分自身を客観的に見るためのもう一人の自分を作り出すことです。その目的は、何のために考えるのかを明確にし、一歩引いた目線で自分を眺めることで、目的に合った回答ができているかを確認することにあります。 どうして偏見を防止? 私たちは無意識に思考の偏りを持ってしまうことがあります。それを防ぐためには、頭の使い方を知り、反復トレーニングを重ねることが大切です。私は、この6週間、これまでと異なる頭の使い方を意識し、しっかりとトレーニングに励むつもりです。 顧客要求は本質か? 新規事業の立ち上げフェーズでは、顧客要求を整理しながら商品企画を進めています。顧客要求が本当に解決すべき課題に対するソリューションになっているかを確認するため、日々議論を重ねています。顧客との対話を通じて要求を導き出してきましたが、さらに深い議論を重ね、本質に近づきたいと考えています。また、議論が脱線しがちなため、「今日の議論の目的は何か」を常に意識し、必要に応じて軌道を修正したいです。 結論の真意は何? 議論を進める上で意識すべきこととしては、以下の点が挙げられます。まず、今この瞬間の議論が目的に合っているかを確認すること。そして、直感や思いつきで判断していないかを反省し、もう一人の自分がその考えをどう評価するかを考えます。さらに、現在の結論が本当に正しいのか、少なくとも「なぜ」をあと3回考えてみることが重要です。

クリティカルシンキング入門

本質を見極める力の重要性

本質的な課題とは? 今の状況において考えるべきことや答えを出すべき問いを「イシュー」と呼びます。イシューを明確にすることで、本質的な課題解決の道筋を立てることができます。また、イシューを明確にするためには、数値という裏付けが重要です。 イシューを特定するポイントは? イシューを特定する際には以下のポイントを押さえましょう。 1. 問いの形にすること。 2. 具体的に考えること。 3. 一貫して押さえ続けること。 話し合いの場で注意すべきことは? たとえイシューを特定しても、気づかないうちにそれが逸れてしまうことがあるため、立ち返ることが大切です。また、一貫してイシューを押さえ続けることを念頭に置いてください。 会議や打ち合わせなどの話し合いの場では、議論が脱線しないように、答えを出すべきイシューを特定し、メンバーで共有して臨むことが重要です。 ミスの際に見直すべきことは? ミスが起きたとき、修正が目的になってしまいがちですが、もっと本質的な部分に目を向けることが必要です。課題解決にあたり、何をイシューとするかを見極める力をつけることが求められます。 データを活用したイシュー特定法は? イシューを特定する際、思い込みからイシューを見誤ると望む結果は得られません。可能な限り数値的根拠をもって特定することを心掛けましょう。具体的な方法として、ピラミッド・ストラクチャーを用いてイシューの書き出しと整理を行うことが有効です。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

アカウンティング入門

営業戦略の裏側を徹底解析!P/Lで見る必勝法

なぜP/Lを理解する必要があるのか? ビジネスのコンセプトやビジネスモデルを理解した上でP/Lを読むことが重要です。ビジネスモデルが分からないままP/Lだけを見ても、数字の示す意味が理解できなくなります。ビジネスモデルが分かると、数字、特に費用の内訳が想定しやすくなります。特にマーケティング費用は時折忘れがちになるので注意が必要です。これは、エンジニア出身者の弱点としてより意識して取り組むべき点です。 ビジネスモデルごとのP/L比較 現在、部門内のいくつかのプロジェクトのビジネスケースを見直す時期です。各プロジェクトのP/Lを確認し、特にサービス、ハードウェア+サービス、ハードウェアBtBなどのビジネスモデルごとにP/Lを比較しています。これにより、各プロジェクトの個別のP/Lが確認できる状態になり、横並びで比較することで違いが見え始めています。 効果的なP/L確認の方法とは? まずは、各プロジェクトから提出されるP/Lを来週1日1件ずつ確認していきます。確認すべきプロジェクト数は5つあり、1日1件確認する予定です。分からない項目については、各プロジェクトチームに確認して理解を深めることが重要です。一件ずつ質問を通じて理解を深めていくつもりです。 来週の目標とアクション宣言 グループワーク後の宣言として、米国時間の木曜日までにGlobisの課題を終わらせる予定です。また、プロジェクトのP/Lを見ての気付きも発表する予定です。

クリティカルシンキング入門

思考のクセに気づき、自分をアップデートする方法

学びを深めるためには? 学びを深めていく中で、この講座は前提を理解する場として役立っています。 具体的には、以下の3点が重要であると感じました: 1. 各個人には必ず思考の偏りが存在する。 2. 批判的思考力(クリティカルシンキング)の対象は他者ではなく自分である。 3. 客観的に考えるためには、自身とは異なる環境や業種の人々とのディスカッションが効果的である。 他者目線をどう取り入れる? この内容をより深く理解するためのワークや対策方法を学びました。他者目線は時代の流れや状況で意見が変化することが考えられるため、日々意識してインプットとアウトプットを行っていきたいと感じました。 意識変革への第一歩は? 残り5回の講義をより効果的にするために積極的に参加していきたいと思います。 次に、会議や決定が必要な場面での活用についてです。日々の業務を作業的にこなすのではなく、本当に今のままで良いのかを常に考える習慣を持つことが重要です。このように問い続けることで、どの角度からの問いにも答えられるようになり、提案や意思決定の精度が向上すると考えます。 直感を信じすぎる? また、直感的な意見を避けるため、スペースを持つことを意識しています。その上で出した答えに対して「本当にそうか?」と自問自答することで、精度の高い提案や発信ができると信じています。この習慣を身に付け、さらにこのサイクルに時間をかけ過ぎないように訓練していくつもりです。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

データ・アナリティクス入門

仮説が拓く自分発見の旅

仮説はなぜ重要なの? 仮説を持つことは非常に重要です。物事を早急に結論づけるのではなく、複数の視点から検証し、多角的に物事を捉えることが大切です。 結論への仮説は? 具体的には、結論に向けた仮説と問題解決のための仮説の二種類を考えます。前者は提示された論点に対する仮の答えとして、後者は実際に問題を解決するための道筋として役立ちます。 仮説の意義とは? 仮説を考える意義は大きく三点あります。まず、仮説を立てることにより検証マインドが向上し、説得力のある議論が展開できるようになること。次に、問題に対する関心や意識が高まる点。そして、仮説をもとにした検証プロセスが、最終的な結論に至るスピードアップに寄与することです。こうした仮説検証のプロセスには、アンケートやテストなどの具体的な手順を踏むことが有効です。 なぜ多角的に検証する? また、クライアントのブランドリフトの結果や売上の変動を見た際に、すぐに結論を出さず、なぜその結果が生じたのかを複数の切り口で検証していく必要があります。検証の際は、過去、現在、未来という時間軸に沿って仮説の内容が変化する可能性も考慮することが重要です。 検証の手順はどうなる? まずは情報やデータを収集し、各因子が売上や認知にどのように影響したのかを多角的に検証してください。その手段として、相関分析やヒストグラム、グラフなどによるデータの可視化、さらにはインタビューや簡易調査の実施が効果的です。

マーケティング入門

軸で切り拓く未来の可能性

どんな軸が効果的? ある企業の事例から、商品の仕様を変えることなく新たなターゲットに訴求する際、商品の特徴の中から二つの軸を特定し、ポジショニングマップを検討することが、他社との差別化や自社の強みにつながると学びました。 商品名の魅力は何? また、商品名が持つユーモアや分かりやすさも、商品やサービスの開発において非常に重要であり、場合によっては改名を検討することでターゲットの幅が広がり、売上向上の効果が期待できるという点も印象に残りました。 イベント名はどう響く? 毎年開催している同様のイベントにおいて、イベントタイトルやキャンペーン名称が結果や反響に大きな影響を与えていることを体感しており、企業として二つの軸を十分に考慮し、優位性と顧客からの共感を得られるポジショニングマップを基に企画を打ち出していく必要性を感じました。 顧客の興味は何? さらに、自社が伝えたい魅力や強みだけにこだわるのではなく、顧客が何に興味を持つかという視点を持つことが重要であると考えています。 STPをどう生かす? 加えて、施策ごとにSTP(セグメンテーション、ターゲティング、ポジショニング)を丁寧に実施すること、そして現有のデータだけに頼らず、フレームワークを活用して新しい市場の可能性を探る必要性も強く感じました。また、ターゲティングの評価基準を言語化しながらターゲット選定を行うことによって、運営の質を向上させていきたいと考えています。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

データ・アナリティクス入門

問題解決の鍵:ギャップを見極めるポイント

問題解決の基本ステップをどう活用する? 問題解決について、「What・Where・Why・How」の段階があることを学びました。これらの段階は場合によっては行き来しながら課題の特定を進めるために用いられます。 定量的なギャップ分析を習慣化すべき? 問題解決において、定量的なギャップを要素分解し、影響度の高い変数を特定する手法は、どのような案件にも通じるため、ぜひ習慣化していきたいと感じました。また、MECE(Mutually Exclusive, Collectively Exhaustive)に分解するためのフレームワークについても、既存のものを学ぶ必要があると考えています。 部門間の合意形成はどう進める? 様々な部門の相談案件に対応する際には、まずどこにギャップがあるのかを明確にし、相手の合意を得たうえで進めることが重要です。そして、目の前の依頼内容の解決にとどまらず、その依頼が本質的な事業課題を要素分解した際にどれほどの影響度を持つのかを冷静に判断し、本当に解くべき課題の探索にも応用することが必要です。 「What」から考え始める理由とは? 現状対応中の案件や新規案件に取り組む際には、「How」から入らず、まず立ち止まって「What」からステップを踏んで考えることが求められます。また、あるべき姿と現状とのギャップについては、依頼元としっかりとすり合わせ、共通認識のもとで仕事を進めることが大切だと感じました。

「必要 × 重要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right