クリティカルシンキング入門

問い直しで開く学びの扉

具体的な課題は? 問いを立てることは非常に重要です。まずは、自分が直面している課題を具体的に特定し、それらを整理・分類することが必要です。その中から、最も優先すべき課題を見極めることが求められます。そして、課題に対する解決策を考える前に、「何をすべきか」や「どの問題に取り組むべきか」を改めて問い直すことが大切です。 問いの具体性は? 問いは抽象的なものではなく、具体的かつ明確なものにする必要があります。同時に、問題を構造的に整理することで、組織全体としてその課題に取り組みやすくなります。こうして、組織内で具体的な問いを共有することが効果的な戦略策定につながります。 クライアントの課題は? コンサルティング業務では、クライアントが抱える課題を的確に特定し、分類する能力が重要です。その上で、最も優先すべき課題を見極め、具体的な解決策を提案するためには、具体性と構造性を兼ね備えた問いを立てることが必須となります。問題を整理し、組織全体で共有することにより、戦略の策定と実行が一層効果的になります。 日常の問題は何? 日々の業務では、直面する問題や課題について「何が問題なのか?」を具体的に考える習慣が役に立ちます。目標や課題を書き出し、優先順位を明確にすることで、より効果的に問題にアプローチできるようになるでしょう。 解決のヒントは? また、課題を解決するためには、具体的な問いを自分自身に投げかける習慣が大切です。例えば、「どうすれば業務を効率的に進められるか?」や「このアクションが次にどのように繋がるか?」といった問いを意識することで、日々の行動に前向きな変化をもたらすことができます。 整理のコツは? さらに、作業や思考を体系的に整理し、構造化することも重要です。業務を細分化して「今、何をすべきか」を明確にすることで、効率的な進行と戦略的な取り組みが実現できるでしょう。

データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

クリティカルシンキング入門

ピラミッド構造で学ぶ伝える力

効果的な伝達方法とは? 物事を相手に伝えるためには、以下の要素が重要です。具体的な情景を切り取り、前後の状況を説明し、お互いの考えや状況を的確な言葉で表現することです。これを実現するためには、日本語の正確な使用と、文章を俯瞰して評価する視点が必要となります。しかし、自分の文章を客観的にチェックすることは難しいものです。そこで「ピラミッド・ストラクチャー」というツールを活用するのが有効です。 ピラミッド・ストラクチャーはなぜ有効? ピラミッド・ストラクチャーは、メインメッセージから始まり、キーメッセージやその具体的な根拠を下位に配置することで、論理をピラミッド型に構築します。この方法を使うことにより、作成者自身が論理の妥当性を容易に確認でき、聞き手もどのような理論に基づいて結論が導き出されたかを理解しやすくなります。 報告や提案で気をつけるポイント 特に上司への報告や顧客への提案・交渉の際には活用していきたいと考えています。具体的には、正しい日本語であることに加え、冗長にならないように注意し、ピラミッド・ストラクチャーに基づいてメインメッセージとキーメッセージを明確にすることが求められます。日本語の使用(例えば、助詞や主語・述語、能動態・受動態)について、さらに注意を払う必要があると再認識しました。 MECEを活かしたキーメッセージ構築 また、ピラミッド・ストラクチャーを作成する際には「MECE」(Mutually Exclusive, Collectively Exhaustive)も意識してキーメッセージを組み立てることが重要であると気づきました。報告の際には、事前にピラミッド・ストラクチャーで内容を整理し、対処したいと考えています。また、部下への人事評価のフィードバックにおいても、メインメッセージやキーメッセージを事前に設定した上で対応していきたいです。

データ・アナリティクス入門

理想を描き、ギャップを埋める

問題解決の考え方は? 『問題解決』を考える際は、まず4つのステップ(What・Where・Why・How)に沿って整理します。Whatは問題を明確化し、問題解決には「正しい状態に戻すもの」と「ありたい姿に到達するもの」があると考えます。どちらの場合も、理想の状態と現状とのギャップを定量的に捉え、何をあるべき姿とするのか関係者間で合意することが重要です。 ロジックで何が分かる? また、ロジックツリーは、KPIロジックツリー作成時のみならず、物事を分類して考える際にも活用できます。例えばミュージックスクールの問題解決設問では、B校の収支見積もりから「生徒数を増やすには広告宣伝費が必要で、そこは大きく支出しても良いのでは」といった意見や、講師外の人件費について「A校と兼ねられる業務は1つにしては?」といった考察が見られました。こうした議論を通じ、問題を考える際の順序や段階ごとの整理方法に対する興味が湧いたという点が印象的です。 ギャップの定量化は? 協議の場では、あるべき・ありたい姿を明確に描き、そのギャップを定量化することが重要です。KGI設定の際にはMECE発想を用いて実効性のあるKPIを設定し、定期的に現状との乖離を把握する必要があります。プロモーション施策やイベント出展の際も、まずありたい姿を示すことを基本方針とするべきです。 協議で一致できる? さらに、打ち合わせの冒頭で協議の目線を合わせ、どちらのタイプのギャップを埋めるのか、参加者全員で共通認識を持つことが大切です。従来は「どうしたいか」と上から問いかけても十分な回答が得られなかったが、これからは自らありたい姿を描き、そのギャップと解決策を自ら提案していく必要があります。多方面で考えすぎて結論に至らないこともあるため、ロジックツリーを活用して見える化しながらPDCAサイクルを回すことが推奨されます。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

戦略思考入門

思考の深さが生む経営革新

今回変更する振り返り文章 本質は本当に大切? 本質やメカニズムの重要性を理解するための課題に取り組みました。単に耳にした言葉を引用するだけでは、相手を説得することは難しいと感じました。今回の取り組みでは、規模の経済性を活かすためには、「生産量を増やす」や「原材料の発注量を増やす」といった基本的な提案だけでなく、深く考える必要があると学びました。この経験を通じて、多角的な思考の重要性を改めて実感しました。 考え抜く意識は十分? 過去の学習から、「考えて考え抜くこと」が最も重要であると理解しました。規模の経済性については、コスト低減を考える際、一部のコストだけを抑えるのではなく、トータルコストの低減を目指す必要があります。例として、コスト単価を下げて発注量を増やすと、保管料が増える可能性があります。全体としてコストが抑えられているかを確認するため、まず全体のコストを把握し、細分化して分析することが重要です。そして、どこのコストが下がれば他のコストが上がる可能性があるか、全体を俯瞰する視点が必要です。 コストは細分化できてる? 規模の経済性を考えるうえでは、コスト全体を把握し、できる限り細分化します(事業別、商品別などの軸での細分化)。次に、考えられるコスト低減策を洗い出し、全体を俯瞰して総合的に判断することが大切です。この際、変動費・固定費も意識して細分化を行います。 習熟度は十分? 習熟度効果については、まず業務内容にかかる時間を洗い出します。時間がかかる業務に対しては、マンパワー不足なのか、習熟度不足なのかを検討します。マンパワー不足の場合は生産性の向上を目指した人員配置を考え、習熟度が不足している場合は、慣れや経験を積む時間が必要です。さらに、教育不足であれば育成も視野に入れることが求められます。

クリティカルシンキング入門

新たな視点を引き出すセルフ問いかけ術

自問自答は何のため? 自分に質問し続けることが、もう1人の自分を生み出すと理解しました。これは世間で言う「メタ認知」です。1人で考えると偏りがちですが、自分に問いかけたり他者と会話したりすることで、その偏りを減らすことができます。 理解の分け方は? 分からないということは、考えを分けないままでいることから来ると気付きました。逆に、しっかりと分けることで理解が進みます。これを「MECE」と呼びます。 自問で何が変わる? 自分に問いかけることで、新たな視点や発見が得られます。たとえば、何かを相手に伝えたいと思ったとき、思考の偏りがないかセルフチェックを行うことができます。 どう整理?MECEとAIDMA また、MECEを活用した思考整理の具体的な例として、ある職場で車の販売を行っている状況を考えてみました。お客様にはさまざまな関心度があり、それぞれに適したアプローチを考えるために「AIDMA」というフレームワークを利用します。これにより、どの階層のお客様なのかを把握し、それに応じた行動を整理できます。 店舗課題はどう見直す? さらに店舗の課題を解決するには、来店数や店舗送客数の減少といった問題を分けて考える必要があります。このプロセスを通じて学んだことを活かせると感じています。 スキルアップはなぜ? 私個人のスキルアップについても、お客様との会話で分かりやすく筋の通った説明に活かせる場面が多いと考えました。また、自分が話した内容を振り返り、その説明や提案をもう1人の自分に問いかけて評価することが重要だと思います。店舗の課題に対しては、分けること、そして1人で考えるのではなく他者を巻き込むことが大切です。分けた内容に対して、1つ1つ目的を忘れず取り組むことが求められます。

クリティカルシンキング入門

試行錯誤が切り拓く学びの未来

本質をどう見極める? データ分析では、思い込みや決めつけを排除し、常にMECEの視点で多角的に検討することが基本です。入場者数の分析を通して、一つの要因だけでなく、他にも潜む原因が存在することを実感しました。また、すべての切り口を機械的に網羅するのではなく、目的に沿った仮説を立てながら実際に手を動かし、トライ&エラーを重ねるプロセスが非常に重要です。エラーは「失敗」と捉えるのではなく、「要因がなかった」と前向きに解釈することが大切です。 視点をどう広げる? データをグラフ化する際には、分解のレンジを変えることで新たな視点が見えてくるため、施策検討の方向性が変わる可能性に注意が必要です。また、報告の際は相手に何を伝えたいかを明確にし、その目的に合わせた見せ方を工夫することが、効率的かつ効果的なコミュニケーションにつながると感じました。 分析の深掘りは? 例年行っているプロジェクト業務の振り返りのためのアンケート分析においては、これまでの単なるデータ整理にとどまらず、本講座で習得したスキルを活用したいと考えています。過去の資料では、単なる数字の羅列に留まっていた部分が目立ちました。今回の学びをもとに、より深い考察と次回以降のプロジェクトに向けた提案や改善策の検討を進める予定です。 情報共有は進む? また、まず全体像を把握することを意識しながら、初期の段階で上位者へ超速報としてインプットを行い、今後実施する分析の切り口や方向性を共有したいと考えています。これにより、最終的な分析結果に対する手戻りを防ぎ、効率的な業務遂行が可能になると期待しています。さらに、今後は自分自身だけでなく、チームメンバーへの分析依頼にも対応できるよう、本講座で学んだ内容を基盤として、サポート体制の強化にも取り組んでいきたいと思います。

マーケティング入門

顧客ニーズを探る新視点の発見

顧客ニーズって何だろう? 「何を売るか」を考える際に、まず「顧客のニーズ」を念頭に置くことの重要性を学びました。顧客の「欲求」やそれを解決する手段、さらには顧客が自覚していないニーズについても思案し、提案できるよう努めることが大切です。また、自分が顧客の立場になったつもりで考えることも顧客理解に役立つ方法の一つだと学びました。 具体例はどう活かす? 学びを具体例で深めることができ、特にある事例が大変わかりやすかったです。具体的な例があることで、自社ではどう当てはめるかを想像でき、考えがさらに深まったと感じます。 ペインポイントの意味は? 中でも印象に残ったのは「ペインポイント」という言葉でした。これは「痛みや不快に感じていること」を指し、お金を出してでも解消したいと顧客が感じるポイントです。実はこの視点を私は見逃していたように思いました。 商品見直しの狙いは? 現在、自社製品の商品ラインナップの見直しを行っています。会議では以下の点について分析し、新しい提案をしようと計画していますが、課題もあります。 顧客ニーズの調査は? ①顧客ニーズの分析 ターゲット層が求めているものは何かを考えます。特にペインポイントを解消するという視点で、年代別の特徴を調査したいと考えています。しかし、アンケートを行う時間がないため、正確な情報を得るにはどこからデータを集めるかが課題です。 自社の強みを考える? ②自社の強み どのような点が自社の強みなのか、ブランドイメージを損なわず、原点に立ち返る商品を検討します。 社内データで検証する? 成功事例をもとに、社内データでカスタマージャーニーを調べ、情報を集約して部署内で共有したいと思います。そこから、顧客ニーズをさらに深掘りする相談をしてみます。

データ・アナリティクス入門

データ分析で未来を変える振り返り

分析の本質をどう理解する? 「分析は比較なり」という言葉に触れ、データ分析の本質を理解しました。特に分析の重要な要素を短く表現していると感じ、講座の印象に残っています。具体例では飛行機の比較がありましたが、欠損部分を答えと思ってしまいました。この講座を通じて、すぐに正しい結論を導けるよう、考え方を習得したいと思っています。 分析前の準備は何を意識する? 次に、分析前の「目的」と「仮説」が重要であることを学びました。これまでは仕事の中でしばしば「分析しておいて」と言われ、提案書の内容やグラフの色選びで迷うことが多くありました。これらの悩みの原因は、分析の目的や仮説の前提が欠けていたことに気づきました。この気づきにより、目の前の作業に集中するのではなく、前提意識を持って取り組むことで、提案書の質やクライアントへの説得力が大きく改善されると感じました。 理想の分析へどう向かう? 「言語化・教訓化・自分化」の実践においては、理想の姿を描く際に不足を感じ、反省しました。本講座を通じてこれを意識的に学び、活かしたいと思います。また、内部環境や外部環境のデータ分析でこれらの考えを活用できると感じました。 必要なデータはどう見つける? まず、データ収集の場面では、市場やクライアントの会社を分析時に、どのデータが必要か考えることができます。クライアントに提供するデータについて考える場面にも役立つでしょう。 提案書作成で重要なポイントは? 分析前に重要なのは、「目的」と「仮説」であり、提案書へ表現する際には、明確な目的に基づいて、適切なグラフや色の選択を行うことが大切です。また、分析を進める間にも都度結果を確認し、方針の変更がないかチェックすることで、目的に沿った貴重な分析を行いたいと考えました。

戦略思考入門

誰にも真似できぬ自社戦略の極意

目的意識はどう考える? 講義を通して、まず「戦略は目指すべきゴール(目的)ありき」という基本理念を改めて実感しました。その上で、現在の状況から目的地までのルートを明確に描くこと、そして有限なリソースを踏まえた上で戦略を立てる必要性を感じました。また、リソースが限られている分、競合との差が生じるため、独自性を持つことがより一層重要であると考えました。 独自路線は本当に? 最短・最速のルートは誰もが求めるものですが、実際に実行に移すことは容易ではありません。自社の保有するリソースや競合とのリソース差といったさまざまな要因を鑑みると、単に最速のルートを目指すのではなく、「自社にしかとれないルート」を構築して実際に実行することが戦略として意義があると感じました。ウェブ上でそのようなルートの事例を見ることも多いですが、背後にある「目的」と「独自性」に改めて目を向け、業務に活かす姿勢が求められると実感しました。 施策はなぜ必要? 私はクライアント支援の業務に携わっており、施策の提案や実行において、なぜその施策を行うのかという目的を見失わないよう、常に立ち返る必要があると感じています。施策が目的を達成できるか、そしてその過程で独自性が発揮されているかを再検討しながら業務を進めることが重要です。今後、施策実行前のブリーフィングを徹底し、チーム全体で目的を共有できるように資料化することで、目標達成に向けた意識を高めたいと考えています。 競合状況は理解済み? また、独自性を追求するためには、市場構造や競合状況を常に把握し、情報をアップデートする仕組みが必要だと感じました。支援する側として一つの市場に偏らず、幅広い業界の情報にアンテナを張り、バランスの取れた視野を保つことが重要だと考えています。

「提案 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right