クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

クリティカルシンキング入門

思考を深める「問いかけ」の力

なぜ問いは必要? この講座を通じて、問を立てることの重要性や、そのための考え方を学びましたが、「なぜ問の形にする必要があるのか?」については深く考えたことがなかったと気づきました。問題を問いの形にすることで、解決に向けた思考を進められるということが大切だと学びました。また、講座での課題を通じて、自分が「経験や勘に頼って主観的に考えがち」であることに気づき、これからは客観的に考える方法を身につける必要があると感じました。 どの問いが響く? 「問から始める、問を押さえておく、問を共有しておく」の三点は、さまざまな場面で役立ちそうです。例えば、新規サービスの開発プロジェクトにおいても、「顧客が求めているものは何か」という問いを立て、それを常に念頭に置きプロジェクトメンバーと共有することは、今すぐにでも実践したいことです。また、リーダーの役割を担う中で、「何を課題(問い)と捉えるべきか?」を見極める訓練を積んでいきたいと思います。 正しい問いは? プロジェクトを進める際や会議、データ分析の際には、必ず「問い」を中心に置くことを忘れずに進めようと考えています。問から逸れていないかを確認し、客観的な視点で議論を進めることが重要です。また、リーダーとしてその問いが本当に解くべきものであるかを見極めたいです。講座を通じて多くのことを学んだので、これから様々な場面で実践を重ねていくことが非常に大切だと感じています。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

データ・アナリティクス入門

目的で変わるデータ分析の極意

目的は何だった? 今週の学習を通じて、データ分析は単に数字を集める作業ではなく、まず「何を目的に、どの項目と何を比較するのか」を考えることが重要だと強く実感しました。これまでの私は、手元にあるデータをただ集計し、そこから何か分かるのではないかと考えることが多かったのですが、その結果、正しい判断に至らない場合があると気づかされました。 本質は見えてる? 特に印象に残ったのは、分かりやすいデータだけに頼る生存者バイアスの考え方です。自分自身も、分析しやすいデータに引っ張られがちであったため、「本来見るべきものは何か」という視点を持つ必要があると痛感しました。 課題は何だろう? これまでは、商業部門や関係部署からの依頼で内容を十分に整理せずに作業を進めることがあり、その結果、意図とのズレや手戻りが生じることもありました。今回学んだ「目的と比較を意識したデータ分析」は、現在担当している業務にそのまま活かせると感じ、作業開始前の進め方を見直す良い機会となりました。 対策はどうする? 今後は、依頼を受けた段階で「何を明らかにしたいのか」「どの期間や条件と比較するのか」を必ず確認し、目的とゴールを整理してから作業に取り組むようにしていきます。一方で、実務では依頼元自身が目的を明確に言語化・整理できていないケースも多いと感じ、この場合、どこまでこちら側が踏み込むべきかという課題も感じました。

データ・アナリティクス入門

仮説から未来を切り拓く学び

比較を正確にするのは? 分析は、単に項目を比べるだけではなく、具体的な要素を明確にすることで、より良い意思決定へと繋げる重要なプロセスです。比較対象となる項目以外の条件を可能な限り同一に揃えることで、正確な比較が可能となるため、「Apple to Apple」の状況が求められます。データ分析に用いる情報には、定性データと定量データの両方があり、それぞれの特性を活かしながら分析を進めることが必要です。 仮説の立て方は? データ分析のプロセスでは、まず目的を明確にし、その目的に沿って「仮説」を立てることが大切です。仮説を基に、どの項目をどのように抽出し、どんな結果が想定されるかを考えることで、分析の方向性が見えてきます。また、グラフの作成時には、何を強調したいかという視点から見せ方を工夫することで、情報が整理され、分かりやすいプレゼンテーションが実現できます。 顧客データの意義は? 私は食品メーカーの営業職として、自社の売上や利益のデータはもちろんのこと、主要なお得意先である小売業やドラッグストアなどの顧客データも分析しています。膨大な情報の中から、目的に沿った仮説を立て、抽出すべき項目を明確にすることで、単なるデータの羅列ではなく、得意先の課題やチャンスを具体的に示す資料を作り上げることを意識しています。このプロセスを通じて、課題解決への道筋を明確に示し、より良い提案につなげることが求められています。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

クリティカルシンキング入門

データで読み解く商談の真実

分析目的はどう決める? 数字の分け方や分解方法で、同じデータからまったく異なる分析結果が得られることを学びました。データ分析に取り組む際は、まず分析の目的を明確にし、その後で全体の定義(たとえば分析対象の期間など)を設定することが大切だと感じました。また、グラフ化することで視覚的に理解しやすくなる点も印象的でした。たとえ何も見えなくても、それ自体が正しい結果であると捉え、試行を続けることの重要性を再認識しました。 営業分析のポイントは? さらに、営業分析に応用できると考えた事例もありました。ここ半年間の商談を以下の要素に分解することで、自身の強みと弱み、そしてボトルネックの特定に役立てられるのではないかと思いました。具体的には、①顧客属性(業種、規模、地域)でどの顧客に強いか、または弱いかを把握し、②接点属性(チャネル、紹介元)から成果に結びつきやすいリードを見極める。そして、③商談構造(課題の種類、緊急度)で勝ちやすい案件の特徴を探り、④プロセス分析(商談フェーズ、失注理由)でどの段階に課題があるかを明確にするという点です。 MECE分析はどう考える? また、MECE分析に関しては、全体をどのように部分に分けるか、事象をどの変数で分解するか、そして全体プロセスの中でどこに問題が潜んでいるのかを考察することに難しさを感じています。皆さんはどのようにアプローチされているのか、大変興味があります。
AIコーチング導線バナー

「データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right