データ・アナリティクス入門

仮説検証が切り拓く発見の旅

フレームワークはどう役立つ? 従来、3Cや4Pといったフレームワークは、見せ方や伝え方の整理学として活用されることが多かったです。しかし今週の学習では、仮説設定においてもフレームワークを用いることで、一度幅広く発散しやすいことが分かりました。 どのシーンで学ぶ? この学習を通して、以下のような具体的なシーンで仮説検証の重要性を感じました。 要因分析は何が必要? まず、セールスにおいては失注やペンディングとなった際の要因を分析すること、次に採用活動で辞退が発生した場合、原因を明確にしKGI/KPIを計測しながら軌道修正を行うこと、そして配下メンバーの育成やモチベーション管理について考えることです。 検証の視点は変わる? 既に一部の分野では仮説検証や打ち手の実行に取り組んでいるものの、改めて「0ベースで課題に対する要因を検討する」という姿勢を強化したいと思います。従来は、成功体験や失敗の再発防止といったステレオタイプ的な視点で要因を捉える傾向がありましたが、今後はフレームワークを活用して、より多角的かつ広い視野で検証に取り組む意識を持ちたいと考えています。

戦略思考入門

研究を成功させるための本質を学ぶ

実践とスピードの再認識 手を動かして実践することとスピードの重要性を再認識しました。規模の経済について学び、スケールメリットが効果的だと思っていたものの、多くの注意点があることを知りました。また、本質を理解することが非常に重要だと感じました。これまでも多くのフレームワークを学んできましたが、本質を押さえていないと、今回の演習のように間違った使い方をしてしまうことがあると痛感しました。 解析結果をどう解釈? 本質を理解することは、私の業務である研究においても非常に重要です。例えば、解析アプリを使えるだけでなく、原理がどのような処理を行っているのかを理解しておかないと、結果の解釈を誤ってしまう可能性があります。ただし、昨今のスピードでは、細かい原理までフォローする余裕がないため、対処方法を考える必要があります。 研究での専門性理解の要 研究業務では様々な専門性を動員して研究を進めています。全ての専門性の本質を深く理解することは難しいですが、最低限押さえておくべきポイントや深く理解すべきポイントを見極めて、効率良く自己研鑽していくことが重要だと感じました。

戦略思考入門

失敗談から学ぶ成功への道筋

なぜ基礎知識は必要? メカニズムを学ぶには、基礎知識と失敗談の学習が必要だと感じました。基本的には成功に至る道筋がありますが、重要なのはリスク要因をしっかりと文言化することです。成功は様々な要素と偶然が絡むことが多く、要因を完全に特定するのは困難です。しかし、失敗を経験から学ぶことは可能です。失敗した要因は特定しやすいと考えられるため、その学びは貴重です。 価格効果をどう考える? また、差別化を考える時と同様に、価格の効果性を最大化することも重要です。インフレの時代には、価格を無視した施策だけでは顧客満足を得にくいため、新規業務やBPOにおける収益化を考える際に、その知見を活用することが重要です。価格とメカニズムを深く分析し、根拠のある提案を行うことを心掛けましょう。 成功談から何を学ぶ? まずは成功者の成功談や失敗談を本から学び、知見を広げることが大切です。最近では動画でも多くの情報が得られますので、常に最新の情報をインプットし続けることが重要です。このような知見の積み重ねが、意思決定者へのプレゼンテーションや提案の質を向上させることにつながります。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

戦略思考入門

差別化の鍵を見つけた私の挑戦

差別化の見つけ方を探る 差別化について考える際、これまで私はコールセンターやカスタマーセンターのような業界において、サービスの差別化は難しいと感じていました。しかし、どのような点にこだわって価値を提供したいのか、特定の顧客層にどのように満足していただきたいのか、そして他社にない自社の強みは何かを一つ一つ分析することで、差別化は可能だと気付きました。総合的な評価にとどまらず、特定の領域での圧倒的な強みを打ち出し、顧客に価値を提供できる組織を目指したいと考えています。 デジタル化の成功への道は? デジタル化に関しても、他社が導入している機能に追いつかなければならない、一般的に必要だと言われているから導入しなければならない、としてコストと人を投入してきた過去がありました。しかし、導入が本当に競争力を生み出すのか、一度立ち止まって分析することが重要です。VRIO分析を活用してこそ、同じ方向で小さな差別化を積み重ねられるのではないかと思います。このため、次年度の方針を立てるにあたっては、組織の中の自チームにおいても、VRIO分析と差別化の視点を重視して考えていきます。

戦略思考入門

プロジェクト成功へ向けた分析の旅

新プロジェクトに必要な分析手法は? 新しいプロジェクトの構築段階において、既存事業の来期戦略策定のために3C分析とSWOT分析を実施しようと考えています。プロジェクト開始当初に会話はしましたが、現段階で再度分析を行うことで、本格的な稼働に向けた準備を行いたいと考えています。 活用すべき戦略策定のステップは? また、既存事業の来期戦略については、SWOT分析を通じて外部環境の把握と自社サービスの内部環境の見直しを進めていきます。担当として、過去の定量データの調査が必要なため、分析のための情報収集を開始する予定です。 意思決定をどう高める? 具体的な行動計画としては以下の2点を挙げます: 1. 現在私が直面しているような時期や、来期の事業戦略を考えたりプロジェクト方針立案の際に、これまで学んできた分析手法を活用し、関与するメンバーの方向性を統一する。 2. 単に分析手法を行うだけでなく、「経営者の視座で考える」「ジレンマを過度に恐れない」「他社の意見をしっかり聞く」といった意識すべき事項を忘れずに持ち続けることで、効果的な意思決定を行っていきたい。

アカウンティング入門

未来を見据えるB/Sの新戦略

B/S活用はどう変わる? これまで、B/Sは「どれくらい資金を保有しているか」や「返済する必要がある資金の量」を中心に捉えていました。しかし、今後は自社ビジネスの成長のために、どのように資産を活用し、いかに資金を調達するかという将来像を描くためにもB/Sを活用できると実感しました。そのため、成功している同業他社のB/Sと比較し、自社の将来像を考察する必要があると考えています。 具体的には、以下の点が重要だと感じました。 将来の計画はどう考える? まず、自社の事業計画や資金調達計画を立てる際には、現状だけでなく将来を見据えた視点が欠かせません。現在の提供価値に加えて、将来的に求められる資産やその調達方法についても検討する必要があります。 成長戦略は何を学ぶ? また、これまでの業務では、過去の決算などの数値分析に重点を置いてきましたが、今後はこれらの数値を成長戦略に生かすため、将来志向のアプローチを取り入れたいと考えています。成長している企業や成功した企業が採用している戦略を学び、新たな技術やビジネスにも積極的に取り組む姿勢を持ちたいと思います。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

データ・アナリティクス入門

仮説が拓くビジネスの未来

仮説はどんな意味? ビジネスにおける仮説という視点と、フレームワークを活用した論点整理の方法を学びました。仮説を持つことで、仕事に取り組む姿勢が変わり、対峙する問題に対する説得力が増すとともに、ビジネス全体のスピードと精度の向上につながることが理解できました。 どう書き出す? また、仮説を立てる際には、単なる思い込みではなく、まずフレームワークに沿って書き出す方法を試してみようと思います。もし思い込みのまま仮説に基づいて行動を始めると、後に仮説と異なる検証が有効であった場合、その検証を継続することが難しくなる恐れがあります。 現状把握の理由は? さらに、仮説設定に入る前の現状把握や定義のすり合わせにも十分な時間を割く重要性を感じました。これにより、データの項目や取得環境などにも注意を払い、より確かな仮説設定ができると考えています。 仮説確保はなぜ? チームでプロジェクトを進める際には、結果以上に良い仮説設定が成功に直結することを改めて認識しました。そのため、検証プロセスに入る前に、仮説設定に十分な時間を確保するよう努めたいと思います。

マーケティング入門

小さな気づきで大きな成長

どう変化に気づいた? 身の回りの商品やサービスに対して、以前よりもしっかりと目を向けるようになった点には、大いに共感しました。一方で、グルーブワークへの欠席が多かったため、他の受講者と比べて人の考えを聞く機会や、自分の言葉で意見を表現する場面が少なく、学んだ内容の理解が浅くなってしまったと感じています。 なぜ視点を変えるの? また、ある成功事例では、当初は40代〜50代をターゲットとしたため、コストパフォーマンスやタイムパフォーマンスに重きを置く30代のニーズは想定されていなかったことから、ミクロ視点とマクロ視点の両面を持つ重要性を改めて認識しました。商品開発や企画のプロモーションにおいても、予想外のニーズが生まれる可能性を踏まえると、初めから完璧な結果に固執する必要はなく、変化に柔軟に対応していくべきだと感じます。 どう説得力を高める? さらに、社内で企画を実行するためには、決裁者に説得力を持ってプレゼンテーションすることが必須であり、そのためのマーケティング知識やフレームワークの習得が重要であるという点も、非常に印象深かったです。

データ・アナリティクス入門

仮説からはじまる成功のヒント

どうやって最速解決する? 課題解決においては、最短かつ最適なルートでゴールに到達することが他者に対する優位性につながると考えます。そのため、場当たり的な対応や、全体をむやみに検証して無駄にコストや時間を費やすことを避けるためにも、まずは仮説を設定することが必要です。いかに精度の高い仮説を立てるかが重要であり、そのためには適切な知識、経験、そして考え方が求められます。 課題の本質は何? また、課題に取り組む際は、まず何が課題であるのかを適切に理解し、把握することが不可欠です。課題が不明確であれば、得られる答えも曖昧になってしまうからです。その上、対象となるビジネスなどのドメイン知識や過去の経験に基づき、適切な仮説設定に注力していきたいと考えています。 経験は十分伝わる? すでに実践している部分もありますが、さらなる精度向上とスキルアップを図るために、フレームワークと呼ばれる考え方のツールを導入して、より高い精度を目指していく所存です。今回学んだ3Cや4Pを基本とし、今後さらに他の手法も取り入れながら、知識と経験を積み重ねていきたいと思います。

クリティカルシンキング入門

予算作成を成功させるMECE分析のコツ

分析と成功の考え方は? 「分かる」は「分ける」と同じ意味だということが重要です。分析の結果、顕著な傾向が見られない場合でも、それは失敗ではなく、むしろ傾向がないことが確認できた成功です。特に、MECE(漏れなくダブりなく)を意識し、分析の切り口を明確にすることが大切です。 来期に向けた予算分析法 来期の予算作成に向けては、今期のデータをMECEを活用して分析する予定です。具体的には、四半期ごとの傾向、各勘定項目ごとの傾向、各支店ごと、固定費用と変動費用、そして担当者ごとに分けて分析します。また、予算作成の時期を待たず、今から準備を進めることも可能だと感じました。 代替案とスムーズな承認 現状を追う目線とは異なる視点でデータを見て、必要なことを考えます。どのような資料を作成すれば予算承認が通りやすく、承認者が納得しやすいかを考慮します。さらに、他の国や会社全体の状況を把握し、予算取得のために想定される壁があるかどうかを調査し、事前対策やプランBを考えておきます。承認後のフローも整理し、次のアクションにスムーズにつなげられるよう準備を進めます。
AIコーチング導線バナー

「成功」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right