データ・アナリティクス入門

数値とABテストで見極める新戦略

数値化の効果はどう? 実践演習では、複数案を選択する際に「数値化」する手法を学びました。自分なりに言語化して記載する中で、他者に説明する際にもこの数値化が有効であると実感しました。 ABテストって何? また、動画学習ではABテストについて学びました。これまでなんとなく比較手法を採用していたものの、今後は期間や状況を意識し、差異の少ない環境で比較する重要性を再確認しました。 商品の魅力は伝え方次第? 業務面では、スーパーマーケット等へ食品を流通させる中で、商品の訴求ポイントが多数存在するため、どの情報をどのように伝えるか迷うことが多くあります。例えば、ブランドの特徴や原料産地、有機、減塩、糖質オフ、カロリーなど、様々な訴求要素がある中、限られた紙面スペースやウェブバナーでどの情報を選ぶか判断に苦慮しています。そこで、今回学んだABテストと数値化の手法を活用し、客観的に効果の高い訴求方法を選定していきたいと考えています。 評価方法はどう設定? なお、数値化にあたっては、個人の考えやバイアスが影響しやすい面もあり、できるだけ公平かつ客観的に評価できる方法やコツがあれば、今後の業務改善に役立てたいと思います。

戦略思考入門

意思決定の成功法則を究める旅

なぜ現状を分析する? 意思決定において、どの提案が適切かを判断するためには、単に「どのように」進めるかではなく、しっかりと現状を分析し、要因と提案との整合性を意識することが重要です。考え抜かれた提案であれば、たとえ失敗しても次に活かせる経験となります。しかし、分析が不十分なまま失敗すると、その失敗自体が他の要因となり、同じ過ちを繰り返す恐れがあります。 どう提案を裏付ける? 提案は単なる仮説で行うのではなく、まずは現状をしっかりと分析することが求められます。提案は理由によってしっかりと裏付けられ、5W1Hを意識した具体的なものであるべきです。フレームワークの使用は時に面倒に感じられることもありますが、その効果性が高いため、必要な場面では妥協せずに活用していきましょう。 どう柔軟に対応する? 提案や資料作成においては、意思決定者の視点を意識しながら、想定外の事態が起こった場合でも柔軟に対応することが求められます。初めから完璧を目指すのではなく、限られたリソースの中で妥協せず効率的に進めるよう努めます。高次元での妥協を意識しつつ、人の意見を取り入れ、集合知としての折衷案を生み出すことを心掛けることが大切です。

クリティカルシンキング入門

問いから始まる学びの軌跡

問いの重要性は? 「問い」から始めることの重要性を改めて感じました。まず、最初に問いを立て、その問いを共有することが大切だと理解しました。また、問いは立場や視点によって異なるため、誰にとっての問いなのか、何が求められているのかをしっかり見極めなければならないと実感しました。 記憶はどう保つ? また、一度学んだことは反復練習をしなければ忘れてしまうという教訓を得ました。意識的に時間を設けて、学んだ内容を繰り返し実践することで、実際の業務に効果的に生かすことができると思います。 どう企画に繋げる? 市場分析では、市場における問いを自分の立場を意識しながら考えることで、より具体的な課題の把握につながると感じました。一方、企画立案では、立てた問いをそのまま残しておくことで、企画のストーリーに筋が通り、納得性の高い企画が作成できると学びました。 練習はどう変わる? さらに、「問い」から始める練習を通じて、自分の思考の癖を自覚し、客観的な視点を持つことの大切さも理解できました。データを共有する際には適切に視覚化し、伝えやすいレイアウトを心がけること、そして現状の課題を的確に見極めながら進める姿勢が必要であると感じました。

マーケティング入門

広がる視野と本音の引き出し術

コロナの影響は? コロナ期間の事例から、視野を広げることの大切さを改めて感じました。ある企業が迅速に開発力を発揮した事例を通して、自社の強みや、エンドユーザーの潜在的なニーズに気づく機会があることを実感しました。 ヒアリングでのコツは? また、雑談などでリラックスしたムードを作りながらヒアリングを行うと、相手の本音を引き出しやすくなるという点も印象的でした。 ペインとゲインの違いは? さらに、ヒアリングにおいてはペインポイントとゲインポイントを階層で意識して分けることで、解像度の高い情報が得られ、より具体的な課題把握につながると感じました。 価格以外に注目? 加えて、競争入札の提案においては、どうしても価格が重視されがちですが、エンドユーザーや販売法人それぞれが抱える困りごと、いわゆるペインポイントを見つけ出し、明確に言語化することが重要だと考えます。日々の業務では、常にペインポイントを意識し、提案内容にそれが反映されているか立ち返りながら進めることが大切だと感じました。 探り方に秘密は? 最後に、ペインポイントの探り方について、具体的なコツや経験を共有いただけるとさらに学びが深まると考えています。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

マーケティング入門

ターゲティングで差別化を実現する方法

ターゲット顧客による価値の違いとは? 今回の事例を通じて、同じ商品でもターゲット顧客によって価値の感じ方が異なることが分かりました。これがヒット商品につながる要因となるのです。自社や他社の特徴を正確に理解し、自社の強みを複数組み合わせることで、その業界での差別化ポイントを見つけることが可能です。 成功事例から学ぶべきことは? 成功事例の一部では、ターゲティングの評価基準(6R)で高い指数を示しています。セグメンテーション、ターゲティング、ポジショニングの考え方は商品提案においても非常に重要であり、評価指数の高いターゲットに向けたコンセプトを考えることで、より確度の高い提案が可能となります。そのためにも、自社の強みを正しく把握することが重要だと感じました。 セグメンテーションの具体化への道 セグメンテーションやターゲティングの用語はこれまでも耳にしていましたが、実際に商品を考える際にはまだ具体的なイメージがつかめていません。そこで、身近な商品などの事例も踏まえ、これらの考え方に慣れていきたいと思います。また、自社の強みを改めて棚卸しし、複数を組み合わせることで、業界での勝ち筋を考えてみたいと思います。

データ・アナリティクス入門

仮説で深掘り!売上低下の真因

仮説はどう検証する? 仮説は必ずMESEの考え方に基づかなければならないと感じています。そのため、仮説の正しさを相手に伝えるには、最低でも3つ以上の観点から情報を比較し、各角度で検証する必要があります。また、万が一仮説が間違っている場合に備え、複数の仮説を用意することも重要です。 売上減の理由は? 「なぜ売り上げが下がっているのか?」という問いについて、これまでのアプローチはある特定の数値を比較し、その数値を上げるための方法を提案するものでした。しかし、単に数値を比較するだけではなく、なぜその数値が下がっているのかという深い原因に目を向け、さらに詳細な仮説を立てて実証していく必要があると感じました。今後はロジカルツリーなどの思考ツールを活用し、原因の追求をより体系的に行いたいと考えています。 週次資料はどう整理する? また、毎週作成している週次資料はこの手法を実際に試す良い機会だと感じています。週次資料における各項目の定義を再検討し、仮説構築に不可欠な基本的な指標が何であるかを明確にしていきたいです。さらに、月次と週次で使用する項目の見直しも併せて検討し、より精度の高い改善策を模索していきたいと考えています。

データ・アナリティクス入門

相手の心を読む学びの軌跡

相手の意図をどう把握? 報告を求める相手の意図や背景を正確に把握することは、適切なフィードバックや判断を行う上で不可欠です。相手が求める情報や要求の真意を丁寧に確認することで、誤解を防ぎ、必要な情報を正確に得ることができます。 どの視点を取り入れる? また、分析を行う際には、一方的な見方に偏らず、複数の意見や視点を取り入れることが重要です。そうすることで、客観性が向上し、信頼性のある判断が可能になります。結果として、最終的な報告内容も幅広い視野に基づいたものとなり、さまざまな関係者が納得できる結論に導くことができると考えられます。 学びをどう活かす? 今週学んだ「相手の意図や背景の正確な把握」と「多角的な視点の取り入れ」は、クライアント対応やプロジェクト管理に大いに活かすことができます。特に、クライアントの要件定義やプロジェクトの進捗報告の際には、相手の真意を丁寧にヒアリングすることで、期待値のズレを防ぎ、信頼関係の構築につながります。また、チーム内の意思決定においても、メンバーやステークホルダーの多様な意見を取り入れ、客観的な分析を行うことで、より精度の高い提案や解決策を提示できると期待できます。

マーケティング入門

顧客志向で変わる私のマーケ学習への旅

顧客志向の重要性を再認識 「顧客志向」という観点から、マーケティングは単なる「売るための計画」ではなく、「選ばれる工夫」が必要だと認識しました。以前は商品やサービスの提供が少なく、良いものを作れば売れるというイメージを持っていました。しかし、現代では選択肢が増え、情報も簡単に手に入るため、顧客はより厳しく価値を見極めるようになっています。 学びを支援にどう活かす? 顧客のニーズに応え、変化する環境に適応するために、まずは体系的にマーケティングの基礎を学習していこうと思います。 現在、私はバックオフィス業務として店舗や本社、関連会社の支援を行っています。これらを顧客と定義した場合、求められている支援や情報を把握し、「頼りになる存在」として信頼を構築することが重要です。このような視点を持つことで、学ぶことを実践に活かしていく良いきっかけになると考えています。 日常業務で深掘りする習慣を 相手の真意を汲み取ることも重要です。マーケティングを行うのはハードルが高いと感じますが、日常の業務の中で関わる方々の発言や書き込み内容を表面的に捉えず、求めている真意やニーズを深掘りする習慣を付けていきたいと思います。

リーダーシップ・キャリアビジョン入門

経験を活かす!成長のストレッチゾーン挑戦記

相手の経験に応じたタスク設定とは? 相手の経験値や知識に応じて、タスクのレベルを見極めることは非常に重要です。特に、相手にとって少し負荷の高い、いわゆるストレッチゾーンのタスクになるように適宜噛み砕いて渡すことが求められます。また、質問についても、一方的にならず、相手の本音を引き出せるよう心がけることが大切です。 チームでの効果的なタスク管理方法は? 現在の部署では、私より経験の浅いメンバーが多数いるため、どんな場面でもこのアプローチを活用できると考えています。さらに、私はあるプロジェクトのメンバーとしても活動しており、チームメンバーのタスクに対する意識がそれぞれ異なっているのが現状です。そこで、自分が先頭に立ち、個々のメンバーの経験ややる気に応じてタスクを任せたいと思っています。 自分の知識をどう高める? まずは、自分自身の知識レベルを高めることが必要です。そのため、今までやったことのないタスクについては、ある程度の調査を行います。その上で、頭の中でタスクのゴールを思い描き、各メンバーの技量に応じてタスクを割り当てる予定です。その際、相手の経験や技量を把握するための質問を、適切に行いたいと考えています。

戦略思考入門

効率的な優先順位で成果を最大化

リソース投資の重要性とは? 仕事の優先順位を決める際、時間や労力といった個人のリソースに対する投資対効果を考慮することが重要です。特に、個々の業務や顧客への投資対効果が低い場合、対応を中止する決断も必要であることを学びました。リソースの数値化は難しいですが、スケジュールに記録することで可視化できます。 会議参加の優先順位のつけ方 現在、私は企画の業務として、研究部隊の様々な会議に招集されています。しかし、全てに参加する必要はなく、研究部隊が十分に対応できることも多いです。企画側から依頼する研究テーマや、研究進捗報告の会議は今後の重要な方向性を決める場であるため、必ず参加します。そのため、会議への参加は能動的に優先順位をつけたいと思っています。 講演会やセミナー参加時の判断基準 会議に出席するかどうかをまず検討し、優先度の高い業務があればそれを優先する意向を上司に報告します。また、個人で調査業務を行うため、講演会やセミナーに参加することも多いです。その際、聞きたい内容があるか、講師の専門性によって自分の検証事項に関連する情報が得られるかどうかを考慮して投資対効果を見積もり、参加を検討したいと考えています。

データ・アナリティクス入門

目的明確!多角的視点で読み解く

分析の目的は何? 分析とは、比較によって本質を浮き彫りにする作業であると再認識しました。分析の目的を明確にし、適切な比較対象を選ぶことが、納得感のある結果を導くための基本であると感じています。また、目的に応じた情報の見せ方が存在するという理解も深まりました。 情報整理の必要性は? ダイバーシティ推進の担当として、社内の属性割合や勤務実態の定量データ、そしてアンケート結果といった定性データを扱う機会が多い中で、まずは情報の用途や目的を明確にすることの重要性を改めて認識しました。必要な情報をより深く掘り下げ、検討していくことが今後の課題です。 多角的視点はどう? また、自分だけの視点に偏らず、他者の意見を取り入れることで、多角的な視点から情報を集約したいと考えています。こうすることで、より客観性の高い分析が可能になると実感しています。 透明な分析方法は? 一方で、分析の目的に応じた仮説設定が、恣意的に都合の良い情報操作につながるのではないかという懸念も感じています。今後の学びを通じて、この疑問に対する気づきを得るとともに、より透明性のある分析手法の習得を目指していきたいと思います。

「高い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right