クリティカルシンキング入門

問いが拓く学びの未来

問いの設定ってどう? 常に問いを立て、共有しながら進めることの重要性を改めて実感しました。プロジェクトの課題を議論する際に、まずは明確な問いを設定することが必要だと感じています。自分の考えを具体と抽象の間で行き来させ、多角的な視点から問いに答えることが、より納得感のある具体策の構築につながると思います。 戦略の現状を見極める? 現在、下期戦略の検討段階にあり、あるべき姿と現状との差を比較することで、課題(ISSUE)と対応策(打ち手)をセットで検証するアプローチが効果的ではないかと考えています。チームメンバーともクリティカルシンキングの考え方を共有しながら、どの打ち手が本当に有効かを慎重に検討していくつもりです。 問いメモの習慣は? また、議論の場や面談の際には、必ず「問い」をメモする習慣を徹底したいと思います。日頃のコミュニケーションにおいても、一旦立ち止まってその場の勢いで答えず、3つの視点を取り入れて回答することを心がけることで、より充実した議論ができると感じています。

アカウンティング入門

数字の裏側で見える経営の真実

利益と価値の関係は? コストを正しく理解することは、顧客に提供する価値を見極める上で重要です。利益獲得の状況は、利益額と利益率の両面から評価すべきです。たとえば、あるカフェビジネスのケースでは、ミノルとアキコがともに営業利益3%を実現していたものの、実際の金額には大きな差が見られました。 利益管理の難しさは? また、担当するポジションによっては、最終利益に至るまでの利益管理が求められる場合があります。しかし、外部からの評価はあくまで最終利益を基準として行われるため、この点を意識する必要があります。 競合分析のポイントは? 次に、競合他社の分析も重要です。まずは全体の動向を把握し、費用対売上高の効率性を中心に検証します。その際、マーケットシェアとの関連性にも注目することが望まれます。 損益比較のコツは? さらに、競合他社の損益計算書(P/L)を確認し、決算短信に記載されているビジネス概要のコメントを参考にしながら、自社のP/Lと比較してみることが効果的です。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

データ・アナリティクス入門

仮説で挑む学びの実験室

仮説はどう整理する? 仮説を立てる際は、まず複数の仮説を考え、その中から適切なものを絞り込むことが重要です。それぞれの仮説が互いに網羅性を持つように、さまざまな切り口で考えを広げる必要があります。 データは十分かな? 次に、立てた仮説に基づいて分析に必要なデータを収集します。もし手元に十分なデータがない場合は、誰にどのように聞くかを決め、比較のためのデータも合わせて収集しておくことが求められます。 仮説の基本って何? 仮説思考とは、目的(コミュニケーションや問題解決)と時制(過去・現在・未来)を整理しながら、結論を導く仮説や問題解決のための仮説を立てる考え方です。 ギャップをどう埋める? 施策を検討する際は、現状(ASIS)と目標(TOBE)とのギャップ(GAP)に着目し、その差を埋めるために仮説を構築します。メンバーと意見を交わしながら、多くの仮説を出し合い、その中から絞り込みを行い、最終的に必要なデータを集めるプロセスが重要だと感じました。

戦略思考入門

差別化で創るブルーオーシャン

孫氏の戦略はどう捉える? 孫氏の「戦いを略す」という戦略は、とても分かりやすく心に響きました。単に戦いを避けるのではなく、そのためにはさまざまな検討と対策が必要であることを実感しました。持続的な事業運営のためには、レッドオーシャンよりブルーオーシャンで生き残る戦略の方が成功確率が高いと理解し、そのブルーオーシャン状態を自ら創り出すことが戦略そのものと言えると感じました。さらに、他社との差別化もブルーオーシャン化の有効な手段の一つであると認識できました。この考え方に基づいて事業戦略を立案することが第一歩だと思います。 他社との差別化は何? これまで他社との差別化について深く考えたことがありませんでしたが、戦略を作る上で非常に重要な要素であると強く感じました。単に漠然とした差別化ではなく、どのようにブルーオーシャン化を可能にする差別化を実現するかを念頭に置く必要があります。まずは、他社と比較して一歩上の付加価値を追求するという意識を常に持つことが大切だと考えます。

戦略思考入門

競合を超える!戦略と分析の新発見

ターゲットと競合の意義は? 差別化戦略を考える上で、改めて「ターゲット顧客」と「顧客視点の競合」の重要性を認識しました。競合にばかり目を向けると、自社の本質を見失うことがあります。そこで、VRIO分析などのフレームワークを活用し、戦略立案や競合の把握に役立てることが重要です。 戦略実行の鍵は何? 経営層が策定した戦略を実行する場面が多くありますが、今学んだフレームワークを活用することで、戦略への理解を深めることができます。また、自分が収集したデータを効果的に活用し、それを他のメンバーに共有することで、組織全体を正しい方向に導く努力をしています。 業務で差をつける方法は? 具体的には、自分が担当する業務内で顧客と競合を見直し、現在の設定と比較して違いを見つけ出します。市場の変化を感じるだけでなく、フレームワークを用いて言語化し、その分析結果を組織へフィードバックしていきます。この考え方や動きを他のメンバーにも広げていくことを心掛けています。

マーケティング入門

徹底解剖!イノベーション成功の秘訣

新商品の成功要因は? 新商品を発売する際の成功要因として、イノベーションの普及要件に基づいた考察が非常に参考になりました。具体的には、従来のアイディアや技術と比べた「比較優位性」、生活への適合性、使い手にとっての「わかりやすさ」、試用できる「試用可能性」、そして採用状況が明らかになる「可視性」の5つのポイントが大切であると感じました。 差別化の罠に注意? また、初めは顧客のニーズから商品開発を進めるものの、競合が同じ商品を打ち出すことで、顧客視点が見失われる「差別化の罠」に注意が必要だと学びました。すべての人に受け入れられる商品を作ることが困難な現代では、限られたリソースを最大限に活かすためにも、セグメンテーションとターゲティングの手法が不可欠だという点にも納得しました。 戦略はどう練る? これらの学びをもとに、自社で展開する新サービスのプロモーション戦略や支援策を検討する際に、より具体的かつ効果的な施策を考えていければと感じています。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

比較で拓く新たな視点

比較の価値って? 分析の際、最初に比較の視点が重要であると実感しました。私自身、比較に対して苦手意識がありましたが、実務を通して比較分析を実施するうちに、他者の意見が新たな視点を与えてくれることを学び、自分以外の考えを取り入れる意義を改めて認識しました。 情報分析の秘訣は? また、上司から課題解決のための情報分析を依頼されたときのプロセスも振り返りました。まず、分析の目的を明確にし、次に何と比較するかを検討します。データが少ない場合は割合で表し、表を作成した上で適切なグラフによって視覚的に表現します。その結果を客観的に評価し、必要であればさらに深堀りした分析を行うという流れです。 視点の工夫は? 最後の課題では、男女別や地域別といった切り口での分析が有効であると感じました。ただ、これらの視点に気づくまでに時間差が生じてしまいました。あらかじめスムーズにアイデアが浮かぶようになるためのコツがあれば、ぜひ教えていただきたいです。

アカウンティング入門

他社比較で見つける経営のヒント

他社比較は必要? 自社のみの損益計算書では、単純にいくら稼ぎ、いくら使い、最終的にどれだけの利益が出たかという事実しか把握できません。しかし、適正な運用状況やどこに資金が使われているかを分析するには、他社との比較が必須であると感じました。他社と比較することで、利益率が高いか、原価率が低いかなどがより明確に判断できるのではないかと考えています。 差別化の方針は? また、担当している企業分析の際に、他社との比較から気づく点や自社のブランドポジショニング、競合との差別化要因をピックアップし、より高い利益率を実現するためにどの部分を削減すべきかを検討していきたいと思います。 原価の変動は? さらに、競合企業の分析と自社の過去のPLとの比較により、原価部分、販管費やその他一般管理費がどのように変動しているのか、また営業外費用に具体的にどのような項目が含まれているのかを詳細に確認することで、新たな気づきを得られると考えています。

データ・アナリティクス入門

データ分析で差を生み出す4つの秘訣

顧客分析で何を重視する? 顧客分析や市場分析を行う際、まず「分析とは比較すること」であり、目標と仮説をきちんと立てることが重要だと学びました。定性的な分析に偏りがちで説得力を欠くことがあるため、尺度や数値の性質を正しく理解して、しっかりと分析・評価・考察を行いたいと思います。 他社比較で成功するには? 今後、様々な施策を行う時に他社比較やABテストを実施する機会があると思われますが、その際には、「比較」「目的」「仮説」「考察」を確実に具現化してから各数値の分析・評価を行うことに努めたいと考えています。メンバーや上層部にも十分な納得感を持って進められるようにしたいです。 数値分析の心構えは? そこで、まずは様々な数値を扱う際に「比較対象の妥当性」「目的」「仮説」「考察」の4つを常に念頭に置いて仕事に取り掛かるよう心がけています。また、分析方法についても数値の性質を見極めつつ、適切に分析・評価を行いたいと考えています。

「比較 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right