データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

アカウンティング入門

企業財務に秘めた学びの発見

P/LとB/Sはどう見る? 業種によって、P/LおよびB/Sの構造が大きく異なります。売上原価や販管費も、事業が提供する価値に応じて変化します。例えば、ある企業では、従業員が主要な提供価値となるため、人件費が売上原価に含まれています。つまり、どのような資産を保有し、どのような投資を行ったかをB/Sで確認し、その結果P/L上でどれだけのコストがかかり、どれだけの利益が出ているのかを理解することができます。事業内容と財務情報が密接に結びつく点が、非常に興味深いと感じました。 意外な学びはどこ? 自分が関わっている領域ではイメージしやすかったものの、関わりの少ない分野については新たな発見も多く、理解を深める良い機会となりました。AIを活用して主要な事業ごとのビジネスモデルや収益の特徴を整理することで、概念をしっかりと把握できたと感じます。今後は、代表的な企業の財務諸表を実際に見ながら、更なる理解の深化を目指していきたいと思います。 大事な視点は? また、以下のような視点も重要だと考えます。 決算報告は何を示す? まず、第二四半期の決算報告が自社だけでなく他社も発表しているため、これを比較検討することが有意義です。自社のP/Lの変化を、同四半期に実施した施策(提供価値の向上、投資、資産状況など)と照らし合わせて理解を深めることが求められます。 今後の戦略はどうする? 次に、自社の今後のP/L状況を予測し、戦略の変更や追加施策の必要性について検討することが大切だと感じています。

クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

データ・アナリティクス入門

目的明確!小さな成功体験から学ぶ

分析はどう進める? 分析を始める際は、まず何をどのように比較するかを明確にし、普遍的かつ偏りのない俯瞰的な視点で対象を捉えることが大切です。その上で、最初に目的をしっかり設定し、仮説の構築を行うことが必要です。実際、どの手法を用いるかよりも、まず「何」を重視し、体系的に物事を整理していくことが大切だと実感しました。 目的は明確か? また、何をしたいのか、なぜそれをしたいのかという目的を明確にすることに十分な時間をかけるべきです。出発点のズレはプロセスが進むにつれて大きくなり、取り返しがつかなくなる可能性があるためです。これまで、単にデータを作成するだけで有用な仮説がなかったために、データが十分に活かせず埋もれていた傾向があると感じています。 成功体験は大事? 既に取り組んできた方法もありますが、完全には浸透していない部分もあると実感しています。そこで、今後は継続的に小さな成功体験を積み重ねることが重要だと考えています。 具体手順は? 具体的には、以下の手順を意識しています。 ・まず、複数の視点からデータを検証し、それぞれの状態を正確に把握する。 ・何と比較するか、またプロジェクトを進めるためにどのデータを比較対象とするかを明確に決定し、一度決めた基準は後で変更しない。 ・進捗の状況を見ながら、行動の軌道修正が必要か否かを判断できる体制を整える。 ・結果が出た際には、なぜそのような結果になったのか振り返り、データ上で整理しておく。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

アカウンティング入門

経営指標を使いこなす力を磨く

ケーススタディで何を学んだか? 実際のケーススタディを通じて、P/Lの各項目である営業利益、経常利益、そして当期純利益の増減を比較し、「仮説を立てて検証する」方法を学びました。例えば、「売上高が増えているが売上総利益が減っている理由」として、売上原価の増加という事実を確認し、その原因を推測するプロセスがとても理解しやすかったです。 P/Lを読む際の重要ポイントは? また、P/Lを読む際に重要なポイントも学びました。まず、大きな数字である売上高、営業利益、経常利益、当期純利益を押さえることです。次に、分析においては、比較・対比を通じて傾向の変化や大きな相違点を見つけることが大切です。 どのように過去のP/Lを活用する? 具体的には、自社の過去のP/Lの推移を分析して結果を確認し、今後の予測を立ててみることが重要です。中長期計画を考える際に、これらの分析結果や予測を参考にすることができます。また、同業他社や興味のある会社、業界のP/Lを確認し、好調・不調の推移やその原因を予測することも有益です。 具体的なアクションは何か? 私が取り組むべき具体的アクションとしては、自社のここ数年のP/Lの推移を確認し、今期の予測値について増減の理由を仮説することが挙げられます。同業他社の公開されているP/Lと自社を比較することも重要です。さらに、関連する書籍に掲載されている数社のP/Lを確認し、読み取れることをまとめていきたいと考えています。

「比較 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right