データ・アナリティクス入門

一歩ずつ踏む問題解決の法則

解決傾向に気づいた? 私がWEEK1で振り返った際、「自分が解決したいポイントや進めたい施策にすぐにフォーカスして、アウトプットに繋げてしまう傾向」に気づきました。この課題に対する解決策が、WEEK2で解説されており、以下の点が特に印象に残りました。 どうして段階を踏む? まず、問題が起きた際にはいきなり手段(How)に飛びつかず、【問題解決のステップ】を順に踏むことが大切だと学びました。具体的には、WHAT→WHERE→WHY→HOWの順序を守り、実際に何が起こっているのか、どこで、なぜ問題が発生しているのかを明確にした上で、打ち手を検討するのが鉄則です。思いつきのアイデアに頼ると、運任せになりがちであるため注意が必要です。 全員で何を合意? 次に、WHATの設定においては、関係する全員で「何をあるべき姿とするか」や「どのようなギャップが存在するか」について合意することが重要だと感じました。定量的な指標が提示されていると、より明確な認識合わせが可能になります。 ロジックで整理する? また、問題解決のプロセスを体系的に進めるために、【ロジックツリー】を活用して問題を分解する方法が有効だと分かりました。ロジックツリーを用いることで、問題の全体像が把握しやすくなり、MECE(漏れなく、ダブりなく)に情報を整理する意識が求められます。 感度はどう磨く? 一方で、動画では「感度の良い切り口」を多数持っておくことが勧められていましたが、その「感度」を高めるのは容易ではないという点は難しさを感じました。一つの案件について、部門や職階の異なる複数の方々に説明し、理解を得る必要がある中で、この学びを活かし、まずは問題解決のステップを順を追って実践することが、案件の進行をスムーズにするために重要であると考えています。 問題解決、どう進む? これからは、ロジックツリーで問題の全体像をつかむところから始め、関係者間でWHATの合意形成をしっかり行うことを心掛けて、問題解決に取り組んでいきます。

クリティカルシンキング入門

小さな分解で見える大発見

分解で見える真実は? 分解を行うことで、従来の全体からは見えなかった事実を得ることができると実感しました。例えば、年齢などの区分を均等に分けるのではなく、生データの特徴に合わせた切り口で分解することが重要であると知り、自分自身も改善すべき点だと思いました。実際、いくつかの切り方を試して分析を重ねることで、より適切な理解が深まると感じています。 切り口は何が違う? また、従来は層別分解が得意でしたが、変数分解やプロセスごとの分解など、異なる切り口も学ぶことができました。分解を始める前に全体像を明確に定義すること、すなわち目的を明確にするというクリティカルシンキングの基本が、データ分析においても非常に重要であることを再認識しました。 ウェブの解析はどう? 私の業務では、ウェブシステムのパフォーマンス分析や運用業務の効率化に取り組んでいます。パフォーマンス分析では、レスポンスタイムやエラー率など、様々な指標を機能別、リクエスト別、時間帯別に分解して検証することで、新たな知見を得る可能性が広がっていると感じています。 業務効率の見直しは? また、運用業務の効率化においても、単に忙しさを感じるのではなく、実際に業務に費やす時間を計測し、プロセスや対応内容ごとに分解することで、根本的な原因や改善ポイントが見えてくると実感しています。 ラベリングはどう大切? さらに、データを正確に分解して活用するためには、収集や計測の段階で最小単位までしっかりとラベリングすることが不可欠だと感じました。全体の傾向は平均や合計から把握できるものの、細分化したデータを分析するには、各サンプルがどのグループに属するのかが明確でなければなりません。 知見の信頼はどう生む? そのため、今後も日常的にデータを分解して分析することを念頭に置き、様々な切り口から知見を得られるよう努めたいと思います。いかなる知見が得られても、それが確かなものであるか否かを常に疑い、裏付けを求める姿勢を維持していきたいと考えています。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

マーケティング入門

体験で魅せるオンリーワンの価値

商品単体の差別化は? 商品単体では他社との差別化が難しく、関連する体験を通じた+αの価値が重要であると感じました。たとえば、購買検討や実際の利用前後の体験を丁寧にヒアリングや観察分析することで、ターゲットが求める価値の体験を正しく把握し提供することができると思います。 体験が結ぶ感情は? また、体験は感情と密接に結びついているため、体験をうまく設計すれば価格競争に巻き込まれず、他社との差別化に繋がると感じました。顧客がいつ、何によって、どのような喜びを感じるのかを具体的に設計することで、ポジティブな体験はお客さまとの接点を強化し、長期的な関係構築にも寄与すると考えています。 オンリーワンの秘訣は? 具体例として、お菓子ではなく「おやつ」として情緒的な付加価値を届けるといった発想から、自社のオンリーワンとなれる強みを検討する重要性を再認識しました。施策を通じ、商品やサービスの提供だけでなく、体験価値の設計を意識しながら、さらに深い顧客理解に基づいた価値提供を目指していきたいです。 DM施策はどう改善? 一方、現状のDM施策では、お客さまへの提供や体験を通じた購買促進の設計が不十分であると感じています。今後は、フォローアップ段階においても顧客にとって価値ある内容を検討し、より良い体験価値の提供につなげたいと思っています。 来場イベントの工夫は? また、来場型のイベントにおいては、企画・運営の中で人員や時間に追われ、十分な体験設計ができていない部分を改善する必要があります。今後は、優先順位を明確にし、どこまで詰めることができるかを考えながら進めていきたいです。 感情分析の重要性は? さらに、自社がオンリーワンと考える強みについて、顧客が実際に体験した際の感情や効果をより深く分析することの重要性を感じています。顧客の声が集まりやすい環境であるにもかかわらず、それを十分に活かしきれていないため、今後は顧客分析の優先度をさらに高める必要があると強く認識しました。

マーケティング入門

感情に響く価値の秘密

機能と体験の違いは? 商品には「機能的価値」と「経験的価値」があり、経験的価値を高めた商品は顧客の感情に訴えるため、リピーター獲得につながりやすいと学びました。経験的価値を重視した商品やサービスは、価格、ロケーション、パッケージ、空間などの組み合わせにより特徴づけることができ、差別化もしやすく、価格競争の回避にも寄与します。機能的価値だけでなく、商品の選択、開封、使用時における顧客の感情に着目した商品開発が重要であり、顧客目線のマーケティング活動の大切さを再認識しました。 体験のリスクは何? ただし、体験に重きを置く場合、商品のメリットとして価値を理解してもらいやすく、愛着が形成されやすい一方で、悪い点も目立ちやすく、飽きられるリスクがあるというデメリットも存在します。商品の価値を損なわないためには、顧客の声に敏感になり、競合の動向を把握・分析し、常に工夫と改善を続けることが不可欠だと感じました。 大学業界の変化は? 大学業界に目を向けると、大学は学部教育・研究活動だけでなく、課外活動やキャンパス環境、さらには就職サポートや学生カウンセリングといった生活支援など、さまざまな要素が複合的に絡み合っています。各大学は学部ごとに授業料を設定しており、その金額は類似学部を有する他大学の動向を踏まえて決められています。しかし、近年、特定地域の私立大学では奨学金制度の充実や検定料の割引措置などにより価格競争が激化している様子も見受けられます。そのため、授業料の安さだけで勝負するのではなく、オンリーワンの大学づくりが求められると感じます。 学びをどのように活かす? 今回の学びを自身の知識として定着させるため、日常的に利用しているモノやサービスを例に、機能的価値と経験的価値をさらに深く考察していこうと思います。特に、リピート利用している店舗やサービスにおいては、自身が心地よいと感じる要素がきっと存在するはずなので、丁寧に分析していきたいと考えています。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

データ・アナリティクス入門

グラフでひも解く学びの軌跡

グラフ活用法ってどうする? 今週は、グラフの活用方法について学びました。データのばらつきを視覚的に把握するために、ヒストグラムが有用であると理解しました。たとえば、生徒の年齢のばらつきを見る際には、割合ではなく実数の分布に注目すべきだという点が印象的でした。 どの数値がポイント? また、分析でよく使われる代表的な数値についても復習しました。単純平均・加重平均・幾何平均・中央値など、それぞれの計算方法と用途を確認し、特に平均値は外れ値の影響を受けやすいことに注意が必要だと実感しました。 現場の指摘はどう読む? 現場でDX担当としてデータ分析に取り組む中、先日、部署ごとの退職率を比較して報告した際、経営層から数値の重み付けを考慮するよう指摘を受けました。当初はその意図が分からず戸惑いましたが、加重平均の考え方に近いのではないかと理解し始めています。ランキングだけで示すのではなく、ヒストグラムなどのグラフを用いて視覚的に説明できるよう工夫したいと思います。 数学の基礎は何が大切? 一方で、数学の基礎の重要性を再認識しました。平方根や標準偏差、正規分布と2SDなどの数式が全く理解できず、焦りを感じています。まずは基本を押さえ、Excelの関数でどのように表現できるのか試してみるとともに、ピボットテーブルの復習にも取り組む予定です。 具体例の探し方は? 今回の分析では、どの指標を使うべきか具体例がすぐに思い浮かばなかったため、今後はより多くの具体例を調べるとともに、実際に手を動かして理解を深めるつもりです。遠回りになるかもしれませんが、様々な切り口で数値を検討していきたいと思います。 専門用語、理解できる? また、専門用語の理解もまだ十分ではないと感じており、関連するデータの傾向把握についても、ひとつひとつ学んでいく必要があると実感しました。これからも引き続き、知識を着実に身につけていきたいです。

リーダーシップ・キャリアビジョン入門

振り返るたび輝く未来の一歩

なぜ相手理解が必要? 目標達成に向け、相手や組織を動かすためには、まず彼らを多角的に理解することが重要です。そのために各種フレームワークを活用し、仕事を任せる際には「いつまでにどのような状態にしたいのか」や「どんなプロセスを経るのか」を任せる相手と共に確認し、共通の認識を持つことが求められます。任せた仕事の責任は自分にあることを念頭に置き、計画がどのように進んでいるか、状況の変化やサポートの必要性がないかを適宜フォローする必要があります。万が一、依頼した仕事が意図と異なる結果になった場合は、自身の説明方法や依頼方法を振り返り、相手の努力を認めながらも、自分がどのように進めてほしかったかを冷静に伝えることが大切です。また、任せた仕事が部署全体にどのような意味を持ち、どのように他者に役立つかを説明することで、相手に業務に取り組む意義を見出してもらい、積極的な動機づけを行います。 面談で何を確認? 長期プロジェクトや他部署のメンバーとの面談においては、キャリアアンカーや動機づけ・衛生要因などのフレームワークを用い、相手が大切にしているものや抱えている不安、不満を明らかにします。その上で、今季の目標設定を共に行い、相手との共通認識を持つことが信頼関係の構築に繋がります。 部署目標はどう伝える? また、今期の部署目標に関して取り組み依頼を行う際は、まず部署会で大まかな目標と概要を説明し、その後各グループリーダーと詳細を詰めるプロセスが重要です。この際、相手に合わせた依頼方法やパスゴール理論を活用して、円滑な進行を図ります。 業務貢献はどう伝える? さらに、任せた業務がどのように部署全体に貢献するかを明確にし、定期的な声掛けを通して進捗や困りごとを把握し、必要な支援を提供することが求められます。リーダーとは目標、進め方、年間のプロセスや報告のタイミングを確認し合い、チーム全体がスムーズに連携できるよう努めることが重要です。

リーダーシップ・キャリアビジョン入門

信頼と行動で築くリーダー像

自分のリーダー像は? リーダーに正解はなく、自身が目指すリーダー像を明確にすることが大切だと感じました。そのため、行動・能力・意識の3つの要素が鍵となります。特に、行動は能力と意識の掛け合わせの結果であり、他者からはその行動だけが見えるという点も意識しておく必要があります。 スタッフ成長の鍵は? また、スタッフの成長、すなわち人材育成を考える際は、相手の理解度を把握することが非常に重要です。仕事のゴールを共有し、その背景を伝えるとともに、報連相(報告・連絡・相談)の方法を明確にするといった、基本的な取り組みをしっかり遂行することが信頼関係を築く大前提であると再認識しました。 共通理解はどこ? さらに、各地に分散して仕事をしているだけに、共通理解や共通言語が十分に共有できていない可能性があります。私自身の目標はスタッフの成長を促すことですから、以下の点を意識して進めていきたいと考えます。 効果的な伝え方は? まず、相手の立場を理解するためにコミュニケーションを密に取り、各仕事のゴールを明確に伝えます。また、誰もがリーダーになれるという考え方を体系的に共有し、報連相の方法を明確に提示することで、メンバーに考える機会を提供したいと思います。そして、リーダーとして信頼される行動を、意識と能力を高めながら実践していく所存です。 伝達手段の工夫は? 加えて、文字だけのメッセージで伝える場合も、状況や案件に応じて電話やオンラインで直接伝え、相手の理解度を確認しながら仕事を進める工夫を心がけたいです。忙しい時ほど要点のみを伝えがちですが、まずは相手の立場に立って考えて行動することが大切だと感じます。 能力向上の実感は? 最後に、リーダーの3つの要素の中で特に『能力』を強化する必要を改めて実感しました。この学びを通じて、他の受講生や職員、スタッフと情報を共有しながら、実践的なスキルを着実に身につけていきたいと考えています。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

リーダーシップ・キャリアビジョン入門

理論で実現!やる気UPの秘訣

理論はどう活かす? 今回学んださまざまな理論を通じて、モチベーションの向上方法について再確認することができました。業務の中で実践している手法は経験に基づくものですが、マズローの欲求の五段階説やハズバーグの動機付け・衛生理論といった理論的枠組みに沿って現状の要因がどの位置にあるのかを明確に把握することで、より高い効果が期待できると感じました。 まかせ方はどう? また、実行段階での「まかせ方」については、干渉を最小限に抑える努力や、プロセスどおりに実施できているか、当初の想定通りの結果が出ているかを定期的にフォローする点が十分でなかったと認識しました。各地で業務を進める中、つい口を出してしまったり、細かなフォローが不足していたと実感しました。 フィードバックはどう? さらに、効果的なフィードバックについても、情報伝達はできていたものの、相手が行動を立て直すための支援となるフィードバックが不十分であったと理解しました。 会話はどう見える? 日常のコミュニケーションでは、相手の様子や言動にしっかりと注意を払い、変化に気付けるよう意識を高めたいと考えています。また、定期的な面談や業務の振り返りの機会を活用し、本人に気付きと学びを促すフィードバックを行うことで、より効果的なサポートを実現したいと思います。 動機づけはどう? これらの取り組みを通じて、職員一人ひとりがモチベーションや仕事への動機づけを深く理解し、意欲的に働ける環境を整えることで、強い組織づくりに必要なエンパワーメント力を養っていきたいです。 未来はどうなる? 今後は、面談や振り返りの際に理論をもとに傾向を分析し、各人が意欲的に取り組める業務の選定や依頼の方法を検討することも視野に入れています。状況や体調などの変化を踏まえ、まずは相手の理解を深める「聞き手」としての役割を大切にしながら、気付きと学びを促す機会や能動的な実験ができる環境づくりに努めます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

「把握 × 認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right