データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

ロジックツリーで問題解決の全貌を掴む

現状把握と理想の見通しは? 課題解決においては、まず正確な現状把握と、理想の状態を明確化することが重要だと理解しました。直感的に「●●が問題だ」と結論を急ぎ、すぐに行動を起こすのではなく、ロジックツリーを活用して問題のポイントや原因、解決策を細分化することで、「もれなく、だぶりなく」全体像を把握し、思考の幅を広げて見落としを防ぐことが大切です。また、各問題点の影響の大きさも考慮すべきであると気づきました。 学校の問題はどう解決? 例えば、学校で何か問題が起きた際には、家庭や担任教諭などを「犯人捜し」したくなるかもしれません。しかし、問題は複数の原因が重なって起こっていることが多いため、ロジックツリーを用いて問題を分解し、原因を特定することで、より実践的で効果的な解決策を見つけることができます。すぐに対処できることばかりではないと思いますが、短期的に対応できることと、時間をかける必要があることを把握できることには大きな意義があります。これにより、短期・長期のどちらの改善策も視野に入れることで、単なる対処療法に終わらず、「今すぐには無理」と諦めることなく、適切な解決策を検討することができます。 問題整理はどうする? 問題を考える際には、頭で考えるだけでなく、ロジックツリーや自分なりの図式化を行うことで、問題点や原因、解決策を目に見える形で整理したいと思います。そして、「見える化」した問題を他の人とも意見交換して、図をより正確なものにし、関係者と課題への認識を共有しておきたいです。

リーダーシップ・キャリアビジョン入門

部下の行動を理解するフィードバック術

部下の背景を知るには? 部下の言動には必ず理由があることを実感しました。メンバーの行動の背後にある理由や背景を理解せずにフィードバックをしても、すれ違いが生じることを学びました。もちろん、メンバーが自分の言動の理由を言語化して説明してくれるとありがたいのですが、何も言わず黙り込んでしまうこともあります。メンバーの様子を把握するためにも、フィードバックは対面が基本であり、リモートの場合も必ずカメラONで行うことが重要だと認識しました。 どうしてリアルが重要? 期末にはMBOの評価面接や能力開発面接がありますが、これも基本的にリアルで実施します。やむを得ずオンラインで行う場合でも、カメラONの面談を心掛けています。また、ネガティブな評価を伝えなければならない際は、以下の点を意識しています。まず、事実に基づいて具体的に指摘すること。そして、メンバーの努力に共感し、将来的な成長を期待していることを伝え、前向きになれるよう支援します。自分の過ちに対しては素直に認め、その改善意志を示すことも肝要です。 フィードバックの極意は? 改善すべきネガティブな点だけでなく、ポジティブなフィードバックも事実に基づいて行うよう心掛けています。そのために、気づいたことを忘れないようメモを取ることを継続しています。メンバーの心情に共感するには、行動よりも感情に焦点を当てて質問することが大切です。目標が達成できなかった場合は、目標設定時の期待を再確認し、次年度に向けてメンバーを鼓舞しています。

クリティカルシンキング入門

MECEで問題解決!実践的な学び

分析で重要なアプローチとは? 物事を分析する際に、売上高や入場者数の分解を行いました。この際、ただ機械的に分解するのではなく、仮説を持ち、短絡的に考えずに試行錯誤することの重要性を感じました。また、問題解決のステップとして「①問題の明確化」「②問題個所の特定」「③原因の究明」「④解決策の立案」があることを改めて認識しました。MECE(Mutually Exclusive, Collectively Exhaustive)は特に②③④の解決ツールとして有効です。MECEのアプローチには、層別分解、変数分解、プロセス分解があり、それらを自然に思い浮かべられるように意識しています。 上位層に報告する際のポイントは? プロジェクトで問題が発生した際、現場以外の社内の上位層に報告するときに、全体を俯瞰した整理が求められます。現場の部門は実情を把握しているため、自分の見えている範囲の細かい部分を報告しがちですが、これでは上位層が判断や解決策の妥当性を審議できません。全体を俯瞰して説明する上で、MECEのフレームワークは重要だと感じます。普段から業務全体を見渡す習慣をつけておかないと、問題解決のステップに進むことができない危険性を感じています。 作業見積工数の妥当性をどう示すか? 現在、顧客からプロジェクトの作業見積工数の妥当性を問われており、MECEで説明が求められています。通常作業と特別作業の区分、お互いの作業に重複がないかを確認するために、MECEの層別分解を実施してみています。

データ・アナリティクス入門

仮説の使い分けが未来を変える

仮説の区別はどう? 仮説の重要性については理解しているつもりでしたが、「結論の仮説」と「問題解決の仮説」を明確に区別して認識していなかったと感じます。結論の仮説とは「何が起きているか」を推測するもので、例えば、当年度の営業利益の予想精度を向上させるためには、今年度の新たな受注高が売上へ変わる金額が重要である、といった考えです。一方、問題解決の仮説は「何をすれば解決するか」を推測するもので、受注高の案件規模や工期の長さから、当年度中に売上へ反映されず翌年度にずれ込む可能性のある案件を抽出する、といった視点で考えます。原因の把握にとどまらず、結論の仮説検証をきちんと行うことが、効果的な問題解決の鍵となります。 検証の進め方は? 業績予想においては、結論の仮説はすでに立てられているため、次は問題解決の仮説検証に取り組む必要があります。検証では、複数の改善策候補の中からインパクトが大きく、実行しやすいものを優先し、検証可能な要素に絞って取り組むことが重要です。また、何をもって「効果あり」と判断するかを事前に決める必要があります。業績予想の精度向上を図るためには、受注から売上への転換、売上拡大、コスト削減、特定事業への注力などさまざまな要素の中から、改善余地が最も大きいものを優先順位を付けて絞り込むことも考えています。特に、当社では案件規模によって納期が大きく異なり、大型案件や工期の長い案件は年度ずれとなる可能性が高いため、その点を踏まえて仮説検証を進めなければなりません。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで気づいた自分の価値観再発見

キャリアアンカーで自己分析を深める キャリアアンカーという考え方による分析を通じて、自分が仕事において何を重視しているのかを見つめ直す機会が得られました。これまで自分の仕事に対する価値観について深く考えたことがなかったため、演習を通して忘れていた価値観を思い出すような感覚でした。キャリア・サバイバルに関しても、自分のキャリアをここまで深く分析し、プランを練る必要があるのかという現実と理想のギャップに悩んだことも事実です。それでも、目標を定めて努力の方向を一致させることはキャリア・サバイバルだけでなく、様々な場面で基本となる行動だと再認識しました。 メンバーの価値観をどう見極める? さらに、一緒に働くメンバーがどのような価値観を持っているかを把握することが、仕事の任せ方や進め方に大きく影響することを実感しました。そこで、皆の価値観をそれとなく探りながら、より良い仕事の任せ方や進め方を模索していきたいと思います。また、自分自身の仕事に対する価値観をもう一度見つめ直し、能動的に仕事の選択をしていくことも必要だと感じました。 効果的な業務改善のためには? 来週には少し問題のある従業員を含めてプロジェクトの振り返りを行い、今後の仕事の進め方やコミュニケーションの取り方を見直す計画です。仕事ぶりだけを評価するのではなく、その従業員が持つ仕事の価値観や望んでいるキャリアを把握する時間を確保することで、より効果的な仕事の進め方ができるのではないかと考えています。

戦略思考入門

選択と集中が生む、企業変革の鍵

慣例を捨てる意識を再確認 事業や業務において「捨てる」ことは、「慣例」や「定型」に拘らないことだと意識していましたが、今回の学習を通じて無意識のうちに「慣例」や「定型」に捉われていたと気づかされました。個人で「捨てる」ことは容易ですが、組織として「捨てる」ことは意識的に取り組む必要があり、論理的なストーリーを立てて進める必要があると再認識しました。「ムダじゃない?」や「意味はない」では他の社員は納得してくれず、腹に落ちないことを肝に銘じておきたいと思います。 プロジェクトへの想いと捨てる決断 IT業界では参画したプロジェクトに長期間携わることが多く、顧客やプロジェクトに対する想いが強くなりがちです。事業領域を選択と集中(捨てる)する際には、参画メンバーの心情も考慮する必要がありますが、メンバーの意識や想いを重視することはできません。トレードオフを念頭に置きながら、検討・計画・実行していきたいと思います。また、客観的な判断を行うために数値をベースにして取り組んでいく必要があります。 トレードオフの検討にどう向き合う? トレードオフを検討するにあたり、売上高や利益、一人当たりの売上高や利益、投下コストなどの生産性指標を把握し、社員にも示せるように準備を進めます。数値をベースに社員の意見も取り入れた上で判断し、上層部への提案を行っていくつもりです。現在、中期計画や短期事業計画の策定に携わっており、事業領域の検討にこれらを取り入れて進めていきます。

リーダーシップ・キャリアビジョン入門

キャリアを見つめる新しい視点

キャリアの軸は何? キャリアを考える上で重要な概念として、「キャリア・アンカー」と「キャリアサバイバル」があります。この二つは、個人の判断基準やモチベーション、キャリア構築に深く影響を与えるため、キャリア形成の手法であると同時に、メンバー育成においても重要な認識です。ただし、「キャリア・アンカー」と職業を直接結び付けることは避けるべきです。 戦略はどう描く? 「キャリアサバイバル」は、職務と役割の戦略的なプランニングです。目指すキャリアと組織が求める役割を理解し、試行錯誤しながら、自らが進めたいキャリアと組織から求められるアウトプットを両立させることが求められます。 価値観はどう確認? 新しい仕事やプロジェクトを始める際、初めて接するメンバーと仕事をする場合には、各メンバーが持つ判断基準や価値観を認識することが重要です。これによって、目標設定やタスクの割り振りが適切になり、メンバーが仕事の意味や意義に共感しやすくなることで、モチベーションの向上につながります。 成果と成長は? これまで一緒に仕事をしたことがないメンバーと協働する際には、その人の能力やスキルを確認するだけでなく、どのような判断基準や価値観を持っているかを把握するよう努めましょう。また、仕事を割り振る際には、その仕事が求めている成果やアウトプットを共有するとともに、その仕事が各メンバーのキャリアにどのように影響を与えるかや、どのように貢献できるかを伝えることが重要です。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

デザイン思考入門

ユーザー視点で挑む行政改革

住民サービス改善とは? 私の職場である自治体において、住民への行政サービス提供の改善を実践しています。一例として、市役所の窓口での手続き改善点を見出すため、職員がロールプレイング形式で体験しながら意見を出し合ったり、電子化された行政手続きを自ら試用してみたりする取り組みがあります。 試用体験の効果は? 電子化された行政手続きは、リリース前に何度も動作チェックを兼ねた体験が行われるため、自然と試用される流れになっています。私自身は行政手続きの担当部門ではなく、システム開発側にいるため、制度の細かな点についてはあまり把握していません。そのため、住民に近い立場から、専門用語を極力排除し、質問項目も必要最低限に工夫して使うよう努めました。この経験から、行政特有の硬直した手続きや、利用者側のストレスを実感し、ユーザー視点に立ったサービス開発が可能であったと考えています。 ユーザー共感どう生む? 利用者はあくまでサービスのユーザーであるため、ユーザー視点で製品やサービスを開発するのは当たり前のことです。しかし実際には、業務の多忙さや手間を理由に、この基本的なステップが省かれている場合が多く見受けられます。組織全体の取り組みとしてユーザー共感のプロセスを重視することで、より良い環境づくりが実現できるのではないでしょうか。共感と共創が伴わない製品やサービスは淘汰されるという認識のもと、今後もユーザー体験の改善に努めていく必要があると感じています。

マーケティング入門

顧客視点を磨く提案書作りの挑戦

マーケティングの再認識とは? マーケティングは「顧客起点」であることを再認識しました。顧客視点で魅力を発信することはもちろん、販売側がその魅力をどう伝え、理解してもらうかが重要であると学びました。また、内部の体制作りや方針の理解を進めることも、マーケティングの鍵であると感じました。今後、顧客のニーズを具体的に把握するためには、業務の深い理解と社内での連携、そして効果的なコミュニケーションや提案が求められます。皆さんの意見を参考に、より具体的な提案を行えるようにしていくことが重要です。 提案書作成の課題は? 日々の業務では、顧客向けに新規案件の提案書を作成することが増えています。しかし、提案書が自社視点になりがちで、顧客のメリットを中心に作成できていないことに気づき、修正を行ったことが多々ありました。また、言葉の選び方や資料作成の難しさも痛感しています。自社の魅力を顧客視点で伝える思考と方法を身につけ、これを業務に活かしていきたいと考えています。さらに、内部体制の構築や伝える方法を学び、これから携わる新規案件にも反映させたいと思っています。 全体を見渡す視点をどう活かす? 常に全体を客観的に捉える視点を持ち、顧客や社内部署のニーズや状況を理解しながら、最良の伝え方を心がけていきたいです。そして、今回学んだことを社内に発信し、自身の理解を深めると共に、チーム全体でマーケティングを意識できる体制を提案し、進めていきたいと考えています。

「把握 × 認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right