クリティカルシンキング入門

問題解決の秘訣:イシューを特定せよ

どの問題から解決すべきか? 問題があると、複数の解決すべき課題を同時に考えてしまい、何から着手すればよいか分からなくなることがあります。しかし、問題を分解し、「今ここで答えを出すべき問い(イシュー)」を特定して、その解決策をまず考えることが大切です。例えば、某飲食チェーン店では、客数の増加に取り組んでから単価を上げるための施策を考えた結果、成功を収めました。もし逆の順序で進めていたら、客足が遠のく可能性がありました。 イシューを特定するポイントは? イシューを特定する際には、次の三点に気を付けるべきです。まず、「問い」の形にする(疑問形)。次に、具体的に考える(壮大すぎる問いにしない)。最後に、一貫してイシューを押さえ続ける(話がそれないようにイシューを何度も確認する)。 業務効率化の鍵はどこに? 業務効率化を提案する際には、まず効率化を図るべきイシューを特定し、それをチーム内で共有します。これにより、何を根本的に解決したいのかを全員が認識し、効果的な方法を見出すことが可能になります。例えば、時間がかかっている業務がある場合、1点に集中して効率化を図ると、別のところで時間がかかってしまうことがあります。これを防ぐためにもイシューの特定と共有が必要です。 問い合わせ増加への対応策は? また、日々の業務改善や問題解決には、具体的なイシューを見逃さないことが重要です。たとえば、ある問い合わせが例年より増加している場合、その原因を探るために情報の掲示方法や他の根本的な問題を検討する必要があります。普段より対応件数が増えていると感じた場合も、その違和感を無視せず、根本的な問題を特定し、それを解決する方法を考える時間を作ることが求められます。場合によっては、同じような問い合わせに対する対応時間が短縮されるかもしれません。 チームにおけるイシュー共有の重要性 常にイシューを意識し、その解決策を探る姿勢を持つことが、業務の効率化や改善につながる重要なポイントです。イシューを共有することで、チーム全体が同じ認識を持ち、一丸となって問題解決に向かうことができるのです。

クリティカルシンキング入門

情報伝達のコツを学ぶ旅

情報伝達のポイントは? 相手に情報を伝える際の重要性について学びました。日本語を正しく使うためには、主語と述語をしっかりと明示することが大切です。頭の中の情報を省略せずに、主語と述語を正しく組み合わせることが肝要です。また、文章の長さも考慮し、読み手にとって負担にならず、理解の妨げにならないようにするために、60文字を目安にすることが推奨されます。 全体像はどう見る? さらに、文章を評価する際には、全体を俯瞰してみることが重要です。相手に効果的に伝えるためには、相手の関心に合わせて理由づけを調整する必要があります。理由づけの候補を複数考えたうえで、どれが最も適しているかを判断します。 構成の柱とは何? 文章を作成するプロセスでは、トップダウンの構成を採用します。伝えたい内容を支えるための「柱」をあらかじめ立て、その後、対になる概念を考え、さらに下層の要素を整えることで、柱をしっかりと支えることができます。 見直しの習慣は? 習慣として、自分が書いた文章を定期的に見直す癖をつけることが重要です。手を抜きそうになったら、相手に負担をかけることを思い出し、チェックを怠らないようにしています。 確認の重要性は? 基本行動として、発信する言葉や文章については、事前に必ず確認を行います。手抜きをしそうになったら、相手への負担を意識して、それを継続するように心がけます。 会議で伝えるには? 実際の業務では、上位方針を具体的に伝えることが求められます。毎週の営業会議では、課員に方針を示す際に、理由を丁寧に説明することが重要です。また、面談時には適切な根拠をもって評価を伝え、認識のズレを防ぎます。管理者会議では、ピラミッドストラクチャーを意識し、結論を明確に報告することが求められます。 報告準備は万全? これらの行動を通じて、相手の立場に立った理由づけや適切な伝達手法を磨いています。日頃から根拠を明確に示せるように、行動記録を保持し、具体的な会話ができるように備えています。また、報告の際にはピラミッドストラクチャーを意識し、事前準備を徹底しています。

データ・アナリティクス入門

目的と仮説で切り拓く未来

比較の本質って何? これまでのデータ分析において、私は「分析の本質は比較である」という点を十分に理解していなかったと感じています。適切なデータ選定ができず、チーム内で議論する際にも目的が曖昧であったため、集合データをそのまま使ってしまい、結果として具体的な結論に至らなかったケースが多くありました。 仮説は本当に必要? また、分析はあくまで目的を達成するための手段であるにもかかわらず、そのプロセスにおいて「仮説を立てる」という基本的なステップを十分に意識せずに進めてしまっていたことも大きな問題でした。 分析準備は万全? こうした経験から、まずデータ分析に入る前の準備段階を丁寧に実施することの重要性を痛感しました。具体的には、分析の目的を明確にし、仮説をしっかりと立てること。そして、分析の途中で常に最初の目的に沿って進んでいるかを確認する習慣が必要であると感じています。 依頼目的は明確? 業務の現場では、依頼元が提示する抽象的な目的に基づいて競合や市場の動向、新たな開発分野の抽出などが求められる中、漠然とした依頼内容のままで分析を進めてしまうケースがあります。その結果、得られたデータが本当に必要な情報を反映しているのか疑問が残る場合があり、依頼元側も求める結果が得られていないと感じることが少なくありません。 質向上の秘訣は何? 今回学んだ内容は、まさにこうした状況で活かすことができると考えています。相手が何を知りたいのか、抽象的な目的を具体的に落とし込み、既知の情報などを基に仮説を立てることにより、アウトプットの質を向上させられると実感しました。また、個人としてだけでなく、チーム全体で取り組む際には以下の点を共有し、実践していくことが重要です。 チーム内の確認はどう? まず、分析の目的を明確にし、チーム全体で統一した見解を持つこと。次に、分析前に十分な仮説を立てること、現状を正確に把握すること、分析対象のデータが適正かどうかを確認すること。そして、分析の途中で常に最初の目的に沿っているかどうかをチーム内で確認し合うことが大切だと考えています。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

クリティカルシンキング入門

問い続ける力でクリティカルシンキングを極める

どうして問いは大切? 上長が6月に交代して以来、「問いは?」と常に問われる機会が増えました。なぜ「問い」が重視されるのか当初は理解できなかったのですが、クリティカルシンキングがその背景にあることを講義を通じて理解しました。この講義を受けることで、クリティカルシンキングを身につけ、事業、ビジネス、私生活全般で活用していくために、特に「3つの姿勢」を意識することが重要であると認識しました。 どうして姿勢が大事? まず、一つ目は「目的は何かを常に意識する」ことです。次に、「自他に“思考のクセ”があることを前提に考える」こと。特にこの二点目は、慣れや習慣も影響していると考え、常に意識して取り組む必要があります。そして最後に「問い続ける」ことです。 なぜ経営で問う? 私は経営企画の仕事でクリティカルシンキングが必須のスキルであると感じています。業務の中で、事業環境や3C分析といったフレームワークを用いた調査・分析においても、クリティカルシンキングを用いることで、内容に深みを持たせることが可能です。また、経営層への提案や承認を得るための資料作成においても、短時間で理解と納得を得るためにロジカルシンキングやクリティカルシンキングを活用できると考えます。特に経営層は費用対効果や投資対効果に注目する傾向があるため、その効果を問い続けるストーリーを論理的に構築することで、納得を得られるのではないかと思います。 どんな問いが響く? 日常業務の提案書や稟議書の作成においても「3つの姿勢」を意識し、思考力を高めることが可能です。また、私生活でも「なぜこの商品が売れているのか?」「なぜこの店が人気なのか?」といった問いを持ち続けることが思考力を高めるきっかけになります。加えて、思考のクセが年齢とともに固定化していると自覚する部分もあるため、社員や知人、友人とコミュニケーションを取り、広くアイデアや情報を集めることを心がけたいと思います。そして、上長からの業務依頼に対しても、その背景や目的を常に問いかけ、業務を効率的に進める意識と姿勢を持ち続けたいと考えています。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

クリティカルシンキング入門

グラフと色の魔法:伝わる資料作りの秘訣

グラフを選ぶ際のポイントは? 今週の学習を通じて以下のことを学びました。 まず、グラフ作成においては「他人に伝えること」を念頭に置くことが重要であると学びました。何を伝えたいかによって適切なグラフの種類は変わります。読み手に負担をかけず、一目で理解してもらえるように、自分の伝えたいことと合ったグラフを選択する必要があります。 文字情報以外での伝え方は? また、情報を伝える際には文字だけでなく、フォント、色、アイコンなども意識的に使うことが大切です。これにより、より印象に残る分かりやすいスライドを作成することができます。ただし、アイコンを使用する場合は、それがノイズとならないようメッセージとの整合を確認することが必要です。 資料の冒頭部分はどう工夫する? さらに、スライドに入れるメッセージについては、読んでもらえる工夫、例えば冒頭のアイキャッチやリード文の工夫が必要です。また、この場合にも図表との整合性を取り、協調したい箇所を意識することで、伝えたいメッセージをより明確に伝えることができます。 資料作成で大事なことは? 次に、具体的な資料作成についてですが、以下の点を意識しています。 企画書や提案書の作成では、興味を持って最後まで読んでもらうことが大事です。読みにくい文章になっていないかを確認し、その先が読みたくなるような冒頭のリード文を意識した資料作成を行います。 グラフの使い分けはどうする? 報告書や発表資料の作成では、データによって適切なグラフを使い分け、自分の伝えたいことと合ったグラフを選択することが重要です。 印象に残るスライド作りの秘訣は? 研修資料や業務マニュアルの作成では、伝えようとしているメッセージと書体が与える印象を揃えることが大切です。書体と共に、色についてもメッセージとの整合を意識し、アイコンを効果的に使ってより印象に残る分かりやすいスライド作成を目指します。アイコンを選択する際にも、伝えたいメッセージとの整合に注意します。 これらの点を踏まえ、資料作成を実践していきたいと思います。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

「業務 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right