データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

データ・アナリティクス入門

仮説と実践が導く成果の道

成果をどう目指す? データ分析を行う際、まず数字やデータに飛びつくのではなく、最終的にどのような成果を出したいのか、何を比較すればよいのかといったアウトプットのイメージを明確にし、客観的に整理することが重要だと感じました。実務での実践力と、学問としての知識習得の両立を意識する必要性も再認識しました。 論点はどう整理する? また、コンサル業務においては、定量分析を進める中で迅速に論点を明確にし、全体の論点を中論点・小論点に分解することで、検証しやすい構造を作ることが求められます。そのため、まず仮説を立て、正しい比較対象に基づいたデータ分析を実施することが大切だと考えています。さらに、このような思考法やプロセスをジュニアメンバーにも積極的に共有し、育成に役立てていきたいと思います。

データ・アナリティクス入門

仮説が切り拓く多彩な世界

どう仮説を活かす? 仮説を立てることで、物事に対して多角的なアプローチが可能になります。偏った考えに陥らず、さまざまな観点から状況を把握することにより、自分自身の理解を深めるとともに、他者を説得するための材料としても活用できるメリットがあります。例えば、「こうだったら、こうではないか?」や「その逆はどうか?」といった問いかけを行うことで、あらゆる角度から物事を捉える習慣を身につけることができます。 ビッグデータ検証は? ビッグデータを扱う際には、仮説の重要性が特に高まります。決めつけることなく、あらゆる可能性を念頭に置いて分析することで、物事の本質に迫ることができるのです。また、このアプローチは、他者への提案や情報の共有にも役立ち、柔軟な発想を促す大切な手法と言えるでしょう.

データ・アナリティクス入門

問題を分解して実践に活かす学び

原因はどう分析する? 問題の原因を探る際、原因をプロセスごとに分解しアプローチする重要性を学びました。解決策には100%の正解は存在しないため、複数の選択肢を洗い出し、それぞれの根拠を明確にしたうえで絞り込むことが求められます。これまで自分の中で明文化して説明することができず、今回の学びでしっかりと腹落ちする成果が得られました。 WEBマーケはどう活かす? また、対顧客のWEBマーケティングに直接関わっていなくとも、営業支援の業務を通じて情報発信と習熟度の向上に努めています。今回習得したA, Bテストの知識を業務に活かし、営業担当者がサービスや商品をより理解しやすい環境を整えることで、実際の活動に繋がるかどうかを、分析と施策のトライアルを通じて検証していきたいと考えています。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

クリティカルシンキング入門

見落とさない!分解思考のすすめ

分解のメリットは? 数字の分析において、まず各要素に分解することが非常に効果的であると学びました。たとえ特定の切り口が顕著な兆候を示していても、他の視点から検証し、見落としがないか批判的に見直すことが大切だという点が印象に残りました。 MECEって何だろ? また、分解を行う際には、まずその切り口全体の定義を明確にすることで、情報が重複せず抜け漏れなく整理される(MECEの考え方)というコツも習得しました。これを踏まえ、会社内での人材や各種KPIなど複数の視点から実践していく予定です。 サーベイの分析はどう? 特に、先日実施された全社のエンゲージメントサーベイを改めて分解し、分析することで、さまざまな事象の要因をより明確に見定められるのではないかと考えています。

データ・アナリティクス入門

新たな視点で未来を切り拓く

分析の目的は何? 分析の目的や検証したい仮説を明確にすることで、アウトプットの内容が大きく変わると感じました。いきなり分析に着手するのではなく、どの切り口を採用するかを検討することで、分析の精度が向上すると実感しています。 新たな視点はどう捉える? これまで、売上データの分析など同じ流れで進めてきた結果、似たようなアウトプットになっているという課題がありました。そのため、今後は新たな視点を導入し、自分自身やチームのメンバーが新しい気づきを得られるよう意識していきます。 バイアスをどう排除する? また、従来のバイアスをできる限り排除する分析手法と、その結果をチーム全体で共有する取り組みを進め、具体的な施策につなげられるよう努めていきたいと考えています。

クリティカルシンキング入門

グラフでひも解く生産実績の裏側

データ分解で何が見える? データを分解することで、見え方が大きく変わることに気づきました。単にデータをそのまま利用するのではなく、加工して項目を追加したり、分析のための新たな軸を設けたりすることが必要であると理解できました。こうした様々な視点からの検証が重要なため、グラフ化はそのための必須作業だと実感しています。 稼働時間はどう分析? また、日々の生産実績において、稼働時間と停止ロスの項目を全体的に定義し、MECE(漏れなくダブりなく)の考えに基づいて設定する取り組みの重要性も感じました。グラフ化によって、どの項目が停止ロスの要因となっているのかを明確に分析でき、各項目の傾向を監視することで、停止ロスの詳細な分析と対策の策定に活かすことが可能です。

データ・アナリティクス入門

実践で切り拓く分析の新世界

どう問題解決する? 問題解決のためのステップと手法について学び、視野を広げるとともに、段階的なアプローチの重要性を再認識しました。分析手法を活かしながら、反復して問題に取り組むことで、着実に解決へと導けることを実感しました。 仮説はどう検証する? また、これまでの業務では、机上の分析に留まっていたと感じる部分があったため、仮説に基づいた実践的な取り組みが必要だと痛感しています。具体的には、仮説の検証や要因の洗い出しを行うために、ABテストのような活動を積極的に実施することで、分析結果を実践に反映し、さらなる理解を深めるプロセスを構築していきたいと考えています。次のステップを意識しながら、迅速な問題解決を目指して取り組んでいきます。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

戦略思考入門

差別化の鍵は強みの見極め

なぜ現状分析が必要? 講義を通じて、ただ単に顧客目線で考えるのではなく、差別化に向けては競合を意識し、実現可能性と持続可能性を検証することが重要であると改めて学びました。まずは、自社の現状を正確に把握するためにVRIO分析を実施し、その結果をもとにポーターの基本戦略を用いてターゲット顧客を絞り込む方法が効果的だと感じました。 どう優位性を確認? また、自社の優位性を明確にするためには、3C分析やSWOT分析と併せてVRIO分析を進めるのが有用であると思います。システム開発が本格化すると、柔軟に対応できる部分が限られてしまうため、提案活動の段階で自社の強みを十分に活かした提案を行うための準備が必要だと考えています。

「分析 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right