データ・アナリティクス入門

目的と仮説で描く成功戦略

目的はどう設定? これまでの学習を振り返り、分析作業に入る前に目的と仮説を立てるプロセスがいかに重要かを再認識しました。また、問題解決に向けて「What、Where、Why、How」の4ステップに沿って進める手法が印象的でした。 業務にどう生かす? 普段の業務においても、まずは問題解決のストーリーをしっかりと組み立て、その上で分析を進めることを意識して取り組みたいと考えています。今後は、各種フレームワークを活用しながら論理的な思考力の向上に努め、より迅速に多くの施策のPDCAサイクルを回していくことを目指します。

データ・アナリティクス入門

仲間と共に広がる発見の輪

異なる視点になぜ注目? グループワークを通して、自分では気付かなかった切り口や別の視点からの意見を得ることができ、その重要性を実感しました。一人で考えるよりも、多角的なアプローチで知見を広げることが大切だと感じています。 多角的整理の意義は? また、個人で企画や分析を進める際には、フレームワークを活用し、抜け漏れなく複数の視点から情報を整理することを意識したいと思います。特定の仮説に固執せず、他部署の意見や異なる分野の知見を取り入れることで、より幅広い視野に立った判断ができるように努めたいと考えています。

データ・アナリティクス入門

多角的仮説で導く最適解への道

仮説をどう見極める? 私は、思い込みや決め打ちで仮説を立てるのではなく、複数の仮説を比較するためのデータを適切に収集することの重要性を学びました。各種フレームワークを活用することで、分析に説得力を持たせることができると考えています。 ITの課題解決は? また、ITを通じて顧客に提供する際には、不具合の原因調査や課題解決に対して様々な解決法が存在することが分かりました。そのため、フレームワークを用いて複数の仮説を網羅的に整理することで、その場に応じた最適な結論を導き出すことができると感じています。

データ・アナリティクス入門

代表値だけじゃ見えない発見

分析の誤りに気づく? データを分析する際、手法に誤りがあると仮説さえも誤ってしまうことを実感しました。代表値だけに頼るのではなく、散らばりなど他の視点にも注目し、分析や加工の方法の知識を豊富に持っておくことの重要性を学びました。 新発見の秘訣は? 業務においては、従来の方法を踏襲することが多い中でも、新たな発見や提案を生むためにはアプローチを変えることが鍵だと感じています。数字の見方一つで、これまで気付かなかった視点や発見があることに気づかされました。
AIコーチング導線バナー

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right