データ・アナリティクス入門

データに潜む真実を見抜く技術

視覚的要素の活用法は? 目は最高の分析ツールです。顧客へのプレゼンでは、すぐに理解できるグラフや表を用いることが重要です。特に、目の前にあるデータや事象にだけ引っ張られず、見えないものも比較対象として考慮することが肝心です。分析の着眼点としては、逆説的な発想を持ち、新たな仮説を立てられるようにすることで、重要な点を見落とさない思考を身につけることが求められます。 データ活用で成果を上げるには? 現在の業務においては、データを活用して顧客の課題解決を図っています。営業活動においても、新規顧客の案件獲得やリード獲得にデータを活用できると考えます。しかしながら、広告媒体や営業ツールの選定では、比較対象のデータがフェアに整わないことがあり、会社との相性も考慮する必要があるため、仮説の設定やデータの加工が難しいと感じています。 目的設定の重要性とは? そこで、目的をしっかりと設定することが重要です。顧客の要望をそのまま受け取るのではなく、意思決定や課題解決にどうつながるかを見極める必要があります。また、仮説の設定については、見えているデータ以外にも比較や仮説の対象となるものがないかを意識して考えることが求められます。

データ・アナリティクス入門

論理と実践で描く解決ストーリー

数値に隠れた真実は? 本単科で学んだ内容を振り返り、まず、データ分析は単なる数値の羅列ではなく、比較対象を明確にした上で、数値に裏付けられた論理的な問題解決の道筋を描くことが大切であると再認識しました。 問題解決の流れは? また、問題解決にあたっては、思いつきの分析ではなく、問題解決の4ステップを明確にし、解決までのストーリーをしっかりと立てて実行する必要性を学びました。健康経営推進でのKGIやKPIの設定、戦略の見直し、効果的な施策の検討、さらには働きやすさや働きがいの醸成に向けた取り組みとして、男性の育休取得率と女性活躍の相関関係の検証、介護と仕事の両立支援に関する現状把握と課題の抽出、効果検証といった事例を通して、その具体的なアプローチ方法が示されました。 効果的なスキル向上は? 加えて、Excelを用いた関数活用やグラフ作成のスキル向上、可視化資料を活かした説得力のあるプレゼンテーションの訓練が、実践的な分析や提案活動に直結する点も印象的でした。自分が出した解決案を俯瞰的に確認し、他者の意見を取り入れてブラッシュアップすることで、より実効性のある提案が実現できると感じました。

データ・アナリティクス入門

分析の核心に迫る!比較の極意とは?

比較の重要性とは? 分析の本質は比較にあります。比較を行う際には、比較対象の性質が揃っているかに注意することが重要です。例えば、長野県のりんごの生産量と青森県のりんごの生産量の比較は適切ですが、長野県のりんごの生産量と静岡県のお茶の生産量の比較は不適切です。上述の例は分かりやすく示しましたが、ビジネスにおいては見た目上は比較されていても、実際には比較対象が揃っていない場合がありますので注意が必要です。そのため、分析においては、どのようなデータを集めるのか、何と何を比較するのかという前段階が特に重要だと考えます。 顧客満足度データの活用法は? 普段、弊社のサービスに対する顧客満足度の分析を行っていますが、データは十分にあるものの、うまく活用できていない部分もありました。これまで適切な比較ができていたのかを振り返りたいと思っています。 分析チームの新たな取り組みは? 明日は分析チームでの会議があるため、今回学んだ視点「分析の本質は比較であり、比較対象を揃えること」をメンバーに共有します。次の分析においては、比較対象についてメンバー間で共通の認識を持ち、適切なアウトプットに近づけるよう努めます。

クリティカルシンキング入門

数字が語る真実と見えない可能性

数字分解で何が見える? 数字を分解することで、今まで見えなかったものが見えてくることに改めて感動しました。しかし、正しくデータを分析するためには、多くの項目を分解することが重要です。たとえ何も見えなかったとしても、それ自体が「見えなかった」という情報を得られる点が印象に残りました。 グラフで何が見える? また、数字をグラフなどで可視化することで、視覚的に理解できることの重要性を再認識しました。 業務分析の深さは? 私は現在、業務の取り組み状況を分析し、弱点を教育する部門に所属しています。分解できる数字は限られていますが、その中で複合的に分解を繰り返し、表面的な分析にとどまらないよう心掛けています。これにより、真の課題を明らかにし、教育の内容や方針を考察できます。 教育方針の決め方は? 2025年度の教育方針を考えるにあたって、まずは12月までに大枠を検討します。さらに、詳細な教育方針や内容については、対象層に分けてチーム内でよく検討し、1月中旬までに考えます。その後、上司の意見を取り入れてブラッシュアップし、最終的には3月初めに発信できるよう進めていきます。

クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

データ・アナリティクス入門

効果的な問題解決のための4ステップ攻略法

問題解決の基本ステップとは? 問題解決とは、「あるべき姿とのGAP」「ありたい姿とのGAP」を埋めることだと学びました。また、具体的なアプローチとして、解決策の立案(How)から入るのではなく、まず問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、そして解決策の立案(How)という4つのステップを踏む必要があることを理解しました。 顧客との関係構築に役立つステップとは? 顧客との関係構築においても、「ありたい姿」を設定し、この問題解決の4ステップを適用することで、効果的に思考を進められることを学びました。例えば、特定の顧客を対象としたアカウントプランの策定や、顧客満足度調査に対する分析やフィードバックなどに、この手法を活用したいと考えています。 フレームワーク活用のポイントは? 問題解決の4ステップを正しく実践するためには、フレームワークを意識し、問題の特定、原因分析、対策立案を論理的に行うことが重要です。問題の認識、原因の分析、対策の立案において、誤った捉え方や抜け漏れがないよう、フレームワークを活用していきたいと考えています。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

クリティカルシンキング入門

データで切り開く健康革命!

問いはどう整理する? この事象を考える際、まず問いを明確にすることが重要です。その問いを常に意識し、流されずに立ち止まる姿勢が必要です。また、その問いについて組織全体で方向性を共有し、具体的な理由や方法を知りたいと思わせるような資料を作成することで、モチベーションの向上につなげていきましょう。 健診データはどう活用? 健診結果や保健指導で得られたデータを活用し、健康意識の向上にどのように寄与できるかを考え、健康教育を企画することが求められます。このデータを駆使して特定保健指導対象者の減少を目指しましょう。さらに、健康意識を自立化させるための最初のステップを見極め、知識を提供することが重要です。 健康教育はどう進展? 半年以内にデータをまとめて分析し、1年以内に健康教育を実現することを目指します。特定保健指導では、自社のデータや傾向を示すことで、メタボリックシンドロームの解消に貢献したいと考えています。健康意識の自立化にはさまざまな手法を用いた仕組みづくりが必要であり、そのためには業務分担を明確にし、中長期的な視点で実践していくことが求められます。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

「分析 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right