アカウンティング入門

企業分析で広がるIT投資の世界

財務諸表の理解が深まる瞬間とは? 総合演習を通じて、実際の企業のP/L(損益計算書)やB/S(貸借対照表)を確認することで、事業構造と諸表の関係性を実感することができました。私は個人的に株式の運用を少し行っており、これまで気になる会社の決算説明資料を読む機会がありました。しかし、それらの多くはP/Lに関する内容が中心であり、B/Sをじっくり見ることはほとんどありませんでした。このことに気づいたのも今回の発見でした。また、特定企業のB/Sを初めて詳しく確認した結果、興味がさらに深まりました。 IT投資比率の適正とは? 私の業務は情報システム・セキュリティ管理です。ここでは、IT投資コストがP/L上で一般に販売費・一般管理費として扱われるため、これに関連する投資コストが売上高に対してどの程度の割合を占めるかを把握し、売上高IT投資比率としてモニタリングしています。これにより、競合や業界平均と比較しつつ、適正なIT投資を導けるよう工夫していきたいと考えています。 クラウド活用企業の比較方法は? 自社のIT投資コストについても、売上高IT投資比率を指標として経年でのモニタリングを行い、競合や業界平均などと比較することで、適正なIT投資判断に努めています。また、自社の情報システムはほとんどがクラウドで構成されているため、固定資産が少ないという特徴があります。この特徴を考慮した上で、適切な比較対象を選定していく必要があると感じています。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

戦略思考入門

学びの視点を広げる環境分析の力

目標達成の秘訣は? 目標を効率的に達成するためには何をすべきなのか、この問いへの答えを導くにはどのような流れで考えていくべきかを、今回の講義で学んだように思います。まず、今起きている事象の本質を見極めることが必要であり、そのためにはKSFを特定することが求められます。 視野拡大のコツは? 広い視点や高い視座で情報を収集し整理することで、全体像を把握することが重要です。これにより、大局を捉え、視野を広げて考えることが可能になります。ただし、自分の観点だけに頼ると見落としや偏りが生じてしまいます。そのため、フレームワークが非常に有用なツールとして役立ちます。フレームワークは単に埋めるだけではなく、各要素の整合性が取れていることが大切です。 環境変化の見極めは? 今回学んだ環境分析は、自分の業務において製品や技術の進化の方向性を見出したり、組織施策の考案に活用できると考えています。特に、自分が見えていない外部環境の変化が業界や製品に大きな影響を与える可能性についての話が印象に残りました。このような状況は、自業務でも起こり得ると考えており、外部環境分析に取り組むことの重要性を感じています。 実践で理解深める? 自業務における製品や技術、組織を対象に、フレームワークを活用して環境分析を進めていきたいと考えています。フレームワークの使用方法を理解するだけではなく、実践を通じて理解を深めることが必要だと感じています。

マーケティング入門

わかりやすさで広がる可能性

普及要件は何が重要? イノベーションの普及要件として、比較優位性、適合性、わかりやすさ、試用可能性、可視性が挙げられます。中でも特に重要だと感じたのは「わかりやすさ」です。顧客や使用者が具体的なイメージを持ちやすければ、試してみようという動機につながるためです。 顧客視点はどう大切? また、顧客ニーズに沿った商品を開発・販売していると、競合企業が似た製品を市場に投入してくることがあります。こうした状況で競合他社の分析に偏りすぎると、顧客本来のニーズを見落としてしまう恐れがあります。そのため、常に顧客視点を重視することが求められます。 市場導入はどう検討? 新製品を日本市場に導入する際は、イノベーションの普及要件を基に、顧客がどのようなイメージを持つかを十分に検討する必要があります。また、競合製品についても、売れているかどうかを判断するだけでなく、顧客がどのような印象を抱いているかを分析し、その結果を自社製品の改善に役立てることが大切です。 改善策は何がある? まずは、売れていない商品を対象に、なぜ売れていないのかを普及要件に照らして考え、どう改善すれば魅力的になるかをディスカッションすることが有効です。さらに、自社製品については、顧客面談や営業担当との同行などを通じて、私たちが伝えたいメッセージが正しく伝わっているかを確認し、より良いサービス提供につなげる努力が必要だと感じています。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

クリティカルシンキング入門

データで読み解く商談の真実

分析目的はどう決める? 数字の分け方や分解方法で、同じデータからまったく異なる分析結果が得られることを学びました。データ分析に取り組む際は、まず分析の目的を明確にし、その後で全体の定義(たとえば分析対象の期間など)を設定することが大切だと感じました。また、グラフ化することで視覚的に理解しやすくなる点も印象的でした。たとえ何も見えなくても、それ自体が正しい結果であると捉え、試行を続けることの重要性を再認識しました。 営業分析のポイントは? さらに、営業分析に応用できると考えた事例もありました。ここ半年間の商談を以下の要素に分解することで、自身の強みと弱み、そしてボトルネックの特定に役立てられるのではないかと思いました。具体的には、①顧客属性(業種、規模、地域)でどの顧客に強いか、または弱いかを把握し、②接点属性(チャネル、紹介元)から成果に結びつきやすいリードを見極める。そして、③商談構造(課題の種類、緊急度)で勝ちやすい案件の特徴を探り、④プロセス分析(商談フェーズ、失注理由)でどの段階に課題があるかを明確にするという点です。 MECE分析はどう考える? また、MECE分析に関しては、全体をどのように部分に分けるか、事象をどの変数で分解するか、そして全体プロセスの中でどこに問題が潜んでいるのかを考察することに難しさを感じています。皆さんはどのようにアプローチされているのか、大変興味があります。

データ・アナリティクス入門

比較で解く!データ分析の秘訣

分析の重要性を理解する 「分析とは比較なり」ということを理解することができました。比較対象が存在しないと、分析が適切かどうかを判断したり、報告相手に納得してもらうような報告ができないと感じました。比較する際には、同じ条件のものを正しく選ぶことが重要であることも学びました。また、データの種類や内容に応じて、効果的に見せる方法を使うことで、報告相手への説得力を高められることも理解しました。これからは、分析結果やデータの種類に応じた適切な見せ方を習得していきたいと思います。 データ比較の実践方法は? 交通系ICカードの決済実績やポイント付与キャンペーンの実績において、前年やキャンペーン開始前のデータと比較し、どのように変化しているか、キャンペーン効果がどう出ているかを分析し、効果を測定したいと考えています。また、分析結果を円グラフや棒グラフ、折れ線グラフを使ってわかりやすく示し、説得力を高めて伝える方法にも意識を向けたいです。 スキル向上への取り組み まずはナノ単科で学んだ内容をしっかりと身に付け、一つでも多く自分のものにしていくことを目指します。そして日々のデータ分析業務において「分析とは比較なり」を心掛け、問題点や課題を正確に把握し、比較分析を徹底するとともに、説得力があり理解しやすいアウトプットを実践していきたいです。そのために必要なエクセルやパワーポイントのスキルを勉強し、磨いていきます。

データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。

クリティカルシンキング入門

分解思考で拓くビジネス洞察

どう分析すべき? データの分け方に工夫を凝らすことで、その背景にあるビジネス状況をより的確に表現できることを学びました。単に漫然と分析するのではなく、まずはビジネス自体を深く理解し、その特性を把握した上で適切な仮説を立てるアプローチが重要だと感じました。 プロセスは必要? また、これまで「MECE=層別分解・変数分解」という理解でありましたが、今回、プロセス分解の視点にも改めて注目することになりました。問題が生じる「場所」を特定する際、この新たな視点が非常に有効だと実感しています。 保険契約の見方は? グループ会社の保険契約状況の見える化においては、同一保険の加入状況を売上金額、保険料、人員数、事業セグメントといった切り口で層別分解し、また対象資産と保険料率による変数分解を行うことが考えられます。同様に、業務効率化を図る際も、まずは業務プロセス自体を検証し、プロセス分解を通じて効率向上の余地がある部分を明確にすることが求められると感じました。 全体はどう見える? 今後は、入手した対象データに対して様々な切り口での見える化を実施し、そこから読み解かれる課題や方向性を対話を通して共通認識にまとめ、実際の行動に結びつけていきたいと考えています。場当たり的な改善ではなく、全体プロセスをMECEの視点で分解して俯瞰的に分析することで、より効果的な取り組みを優先的に進めていく所存です。

「分析 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right