データ・アナリティクス入門

グラフでひも解く学びの軌跡

グラフ活用法ってどうする? 今週は、グラフの活用方法について学びました。データのばらつきを視覚的に把握するために、ヒストグラムが有用であると理解しました。たとえば、生徒の年齢のばらつきを見る際には、割合ではなく実数の分布に注目すべきだという点が印象的でした。 どの数値がポイント? また、分析でよく使われる代表的な数値についても復習しました。単純平均・加重平均・幾何平均・中央値など、それぞれの計算方法と用途を確認し、特に平均値は外れ値の影響を受けやすいことに注意が必要だと実感しました。 現場の指摘はどう読む? 現場でDX担当としてデータ分析に取り組む中、先日、部署ごとの退職率を比較して報告した際、経営層から数値の重み付けを考慮するよう指摘を受けました。当初はその意図が分からず戸惑いましたが、加重平均の考え方に近いのではないかと理解し始めています。ランキングだけで示すのではなく、ヒストグラムなどのグラフを用いて視覚的に説明できるよう工夫したいと思います。 数学の基礎は何が大切? 一方で、数学の基礎の重要性を再認識しました。平方根や標準偏差、正規分布と2SDなどの数式が全く理解できず、焦りを感じています。まずは基本を押さえ、Excelの関数でどのように表現できるのか試してみるとともに、ピボットテーブルの復習にも取り組む予定です。 具体例の探し方は? 今回の分析では、どの指標を使うべきか具体例がすぐに思い浮かばなかったため、今後はより多くの具体例を調べるとともに、実際に手を動かして理解を深めるつもりです。遠回りになるかもしれませんが、様々な切り口で数値を検討していきたいと思います。 専門用語、理解できる? また、専門用語の理解もまだ十分ではないと感じており、関連するデータの傾向把握についても、ひとつひとつ学んでいく必要があると実感しました。これからも引き続き、知識を着実に身につけていきたいです。

データ・アナリティクス入門

掘り下げる力が課題解決を変える

問題解決の流れは? 問題解決のプロセスを整理するために、まずは「問題解決の4ステップ」について学びました。基本の流れは、what(問題の明確化)、where(問題箇所の特定)、why(原因の分析)、how(解決策の立案)という順番です。中でもwhereの部分では、どこに原因があるのかを深く掘り下げ、分析対象の範囲を絞ることで、原因を検証しやすくする点が強調されています。 仮説の立て方は? さらに、原因に対する仮説を立てる際には、複数の仮説を出すことや、異なる切り口(ヒト・モノ・カネなど)から考えることが重要です。これにより、一面的な見方に偏らず、網羅的な分析が可能になります。そして、仮説の検証に向けて、どのようなデータを収集するかを意図的に選定し、意味のある対象から適切な方法で情報を得ることが求められます。 データ収集はどう? また、都合の良いデータだけでなく、比較のための情報収集も欠かさず行うことが必要です。反論を排除するために、仮説に反する情報も踏まえた検討が重要で、これにより説得力のある分析が可能になります。ここでは、フレームワークとして3C(市場、競合、自社)や4P(製品、価格、流通、プロモーション)を活用する方法が示されています。 全体評価は? 総評として、問題解決の4ステップがしっかりと整理され、特にwhereの部分を掘り下げる姿勢が評価されています。今後は学んだ理論を実際のビジネスシーンに応用し、複数の仮説の中から優先順位を明確にする方法を検討することが期待されています。 進捗報告はどう? また、メンバーの進捗報告に際しては、各自がこのプロセスに沿っているか確認することが重要です。仮説が複数たてられているか、異なる視点での切り口が取り入れられているか、さらにはデータ収集が適切に行われているかを、リーダーを中心としたレビューの場でしっかりと意見交換を行い、全体の分析精度を高めるよう努めてください。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

アカウンティング入門

経営健全性を筋肉質で学ぶ企業分析の魅力

視覚的に経営を理解する方法とは? 内容的にはすでに学んだことが多かったが、他の学習者も書いているように「体の大きさ」を使った例がとても分かりやすかった。「骨格や筋肉」を純資産、「脂肪」を負債とし、純資産の割合が高いことを「筋肉質」と表現するのは、会社の経営の健全性を視覚的に理解する助けとなった。前回学んだ売上高と各利益の違いからも会社の戦略やビジネスモデルを把握できたが、企業の全体像や経営の健全性を具体的にイメージできるようになったのは大きな進展だった。 貸借対照表のストーリー理解法 自社の貸借対照表もまた、ストーリー仕立てで理解することが有効だと気付いた。具体的には、各拠点の経営状況を取締役会での報告に基づいて把握し、今後の建て替え業務などで貸借対照表がどのように変化するかを観察することが有益だと思う。 同業他社との比較で学ぶ 同業他社の貸借対照表を通じて企業規模や戦略を理解することの重要性も感じた。特に、同じ業界内での比較を通じて規模感や経営戦略の違いを学ぶのに役立つだろう。 異業種のビジネスモデル理解の重要性 さらに、他の業界の貸借対照表を見る際には、そのビジネスモデルや資産状況を理解することが重要だと感じた。実際、鉄道会社のように固定資産が多い業界のビジネスモデルをイメージしながら、数字を読み取る練習を続けたい。また、経理の数字に馴染みがない中で、一般的な負債額や規模感を身につけることが事業管理や開発に携わる上で役立つと感じる。 経営者視点での貸借対照表の見方 取締役会の議事録や音声を元に会社の経営状態を理解し、貸借対照表を経営者の視点で見るスキルも重要だと思う。他社の情報を見る際には、まずその会社のビジネスモデルをイメージし、そのイメージを持って貸借対照表を確認。その後、HP上の招集通知などに記載された経営状況の説明を読み込み、具体的なストーリーと数字を結びつけて理解するプロセスが有効であると感じた。

クリティカルシンキング入門

データの切り口を見直して発見した新たな視点

切り口を考える意義とは? 分解する前に切り口を考えることの重要性を再認識しました。切り口を考える際には、仮説を持って臨むことが大切だということを学びました。 データ分析に仮説は必要? 今回の講義の演習には、「切り口を考える」場面が多く含まれていました。これはデータ分析を行う際、多様な視点が必要であることを示しています。そして、「切り口を考える」ためには、現時点での仮説を持つことが重要だと感じました。過去にデータを分析しようとした経験があり、当初はデータの傾向を捉えようとしていましたが、進捗が思わしくありませんでした。しかし、過去の経験から推測を立て、それに基づいてデータを精査すると傾向が見えてきました。この経験は、今回学んだ内容そのものであると改めて感じました。 正誤判断で新たな発見を? 仮説を持ち、切り口を考えてデータを見ることで、自分の仮説の正誤を判断するだけでなく、仮説が誤っていた場合でも、その仮説と実際の結果を比較検討できます。これにより、新たな解釈や仮説が生まれ、データに対する理解が深まるのです。 業務への具体的な応用は? このアプローチは、ソフトウェアの期限切れ対応のコスト分析や障害発生時のデータ分析など、直接的な業務にも応用できます。また、プロジェクト立ち上げ時には、コスト評価や対応内容の妥当性を説明する資料の作成が必要ですが、その際には票だけでなくグラフも加えて分かりやすくしたいと考えています。 仮説を立てることの効果とは? これまで、コスト分析というと、ただ数字をマトリックスやグラフにまとめるだけでしたが、それは単なる事実の整理に過ぎませんでした。今後はデータを整理・解析する前に目的を明確にし、その目的と過去の経験から仮説を立て、その仮説に応じた切り口でデータを整理していきたいと考えています。これにより、わかりやすい資料作成だけでなく、コストダウンの端緒を見つけることができるかもしれません。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

マーケティング入門

競合分析で見える自社の強みと課題解決のヒント

自社の強みをどう活用する? 何を売るかについて手当たり次第にお客様の困りごとを探すのではなく、自社の強みを活かせるものを探すことが重要だと改めて気づきました。そのためには、まず自社の強みをしっかり認識することが必要です。自社の強みは競合との比較の中で初めて明確になるため、自社の強みだけでなく競合の強みや弱みもきちんと分析する必要があると感じました。 効果的なヒアリング方法とは? また、困りごとの聞き方についても注意が必要だと再認識しました。「何か困っていることはありませんか?」という聞き方では、ほとんど情報が出てこないことを実際に経験しました。そのため、自ら仮説を立てた上でヒアリングを行うことが重要だと思いました。 産業用コネクタ開発の戦略 自社においては、新製品、具体的には産業用のコネクタの開発を検討しています。そのため、自社と競合の強みを改めて分析したいと思います。また、ヒアリングにおいては、既に一定程度認識しているお困りごとを解決できる製品コンセプトを検討し、ヒアリングシートや説明会を営業部と共有して、業界内の主要なプレーヤーへのヒアリングを実施したいと考えています。さらに、マーケターとして積極的にお客様訪問を重ね、業界のニーズや痛点の確認を進めていきたいと思います。 製品開発のための具体的ステップ 具体的なアクションプランとしては以下の通りです: 1. 現在の製品コンセプトとニーズや痛点を結びつける。 2. 技術部とコンセプトの実現に向けた事前打ち合わせを行う。 3. 実現可能性が確認できた場合、営業部と共にキープレーヤーへのヒアリングを実施する。ヒアリング時には業界の顧客ニーズを解決できる仮説を立てて行う。 4. ニーズの確認が取れたら、製品化に向けた社内検討を本格化させる。 このような取り組みを通じて、より効果的に市場のニーズに応じた製品開発を進めていきたいと思います。

マーケティング入門

顧客の心を掴む秘訣を探る

魅せ方はどう考える? WEEK4では、どのように魅せるかについて学びました。たとえば、ある企業は顧客のニーズに応じた商品開発を行い、新しい層にアプローチしています。しかし、顧客ニーズに合った価値を提供すれば必ず売れるかというと、そうでもありません。ある例では、冷凍食品の容器に関する顧客の要望を反映させたものでしたが、売上は伸び悩みました。その後、商品の特定の利点を強調することで、売上が劇的に増加しました。この経験から、顧客のイメージが売上に強く影響することを学びました。 導入の条件は何? イノベーションが普及するためには、いくつかの条件があります。まず、従来の技術と比べた優位性が求められます。また、ユーザーが生活を大きく変えずに導入できる適合性も重要です。さらに、使いやすさや試用できる可能性、新しい技術が簡単に観察されることも必要です。 顧客の声に注目? 顧客の声に耳を傾けることが大切で、競争に追われるあまり、顧客を見失わないように注意が必要です。具体的な行動として、ネットショッピングで売れない理由とその改善策を考えることから始めようと思います。スマートフォンを使って簡単に取り組めるため、すぐに実行可能です。 市場のニーズは? 多くの人のニーズは異なりますが、市場が小さい場合でも成長性のある市場規模を見極め、正確なニーズに応じたアプローチを心がけたいです。商品企画や市場調査では、顧客のニーズに基づいた商品開発の考え方を通じて新商品のアイデア立案に役立てることができます。商品名の立案では、他社商品との比較を行い、商品名の考案に活かせます。また、プロモーション戦略では、顧客のメリットを明確に伝える手法を策定し、競合分析では自社の強みを再確認し、戦略を見直すことが可能です。 今後の戦略は? 今後の活動を通じて、顧客の心理を深く理解し、満足度を向上させつつ市場での成長を目指していきます。

アカウンティング入門

カフェ事例で解く利益と価値の秘密

顧客価値はどう捉える? カフェのケーススタディでは、「顧客への価値を考える」という現業の企画・マーケティング要素が盛り込まれており、イメージがつかみやすかったです。この事例を通して、企業が提供する価値と損益計算書の読み方を意識するようになりました。 利益はどう違う? また、「利益」と一括りにすると、どこで利益が出たのか、または損失が生じたのかが分かりにくいと感じました。5種類の利益(売上総利益、営業利益、経常利益、税前当期純利益、当期純利益)の違いを学ぶことで、それぞれの意味が理解できました。 複数事業の見方は? 今回の事例はカフェという単一事業のみを扱う企業に焦点を当てていますが、実際には複数の事業を展開する企業も多いのではないかと疑問に思いました。財務三表の中では、PLは基本的に企業ごとに一つですが、複数事業で構成される場合、損益計算書の見方や事業(部門)ごとのPLの存在についても気になったので、復習時に詳しく調べたいと思います。追って、各部門ごとに作成される「部門別損益計算書」が存在するとの情報も得ました。 競合と自社はどう違う? この学びは、企画立案時の事前調査や他社の分析と比較に活かしたいと考えています。企画段階では、すでに決まった予算の範囲内で進めることが多いですが、競合他社のPLを比較することで、どこで利益を生み出せそうかを意識し、費用投資を検討する視点が身につきました。同時に、競合他社とは異なる、自社ならではの提供価値を大切にしていくことも改めて認識しました。 業界特性はどう読む? 今後は、競合他社のPLの確認と比較、さらには小売や製造など異なるビジネスモデル間でのPL比較を通して、それぞれの業界特性や提供価値を考慮しながらPLを見る習慣をつけるとともに、部門別PLがある企業と、1つのPLに集約される場合との違いについても確認していきたいと考えています。

データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

「分析 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right