データ・アナリティクス入門

数字の裏に眠る真実を探る

定量分析の意義とは? 定量的に比較できる状態で物事を分析する大切さを実感しました。特に、MECEやロジックツリーといった手法は、情報を漏れや重複なく整理し、階層ごとに把握するのに非常に有用で、正確な分析の基盤となると学びました。 原因背後の要因は? また、従業員の不満などの現象が発生した際、単に直接的な原因と結びつけるのではなく、その背景にある複数の要因を整理することが重要だと考えるようになりました。こうしたアプローチは、複雑な要素が絡み合う状況において、分析の精度を高める上で大いに役立つと思います。 分析の共通点捉える? さらに、人に関する分析の場合も、複数の要素が関わるため、情報が見落とされたり重複したりする恐れがあります。そこで、今回学んだ手法を活用し、分析対象を構成する各要素に注目することで、一見異なる事象にも共通点を見いだしたり、特定の性質に偏っていることに気づけるよう努めたいと感じています。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

データ・アナリティクス入門

データ分析で見つける!問題解決への道

データ分析はどう始める? 分析は、比較から始まります。問題の定義やデータ分析の目的を明確にし、データの切り口や分析方法、データの効果的な見せ方、さらには仮説を立てる際に有効なビジネスフレームワークを学びました。 手続きの問題はどう捉える? 手続きのデジタル化率を向上させるためのプロモーション施策を考えることを目指し、どこに問題があるのか、どのように解決するのかを段階的に考えていきます。特に、どの手続きでデジタル化の進行が遅れているのかを把握し、その手続きを行った人のデータを深掘りします。 分析で何が分かる? 具体的なステップとしては、最初に手続きが紙ベースかデジタルかを確認し、次に属性データや過去にデジタル手続きを利用した履歴で分類します。それらのデータを用いて、なぜその手続きが利用されたのか、またはなぜ利用されなかったのかを分析することで、より深い理解や示唆を得ることができるでしょう。

データ・アナリティクス入門

クイズで学ぶ比較と本質

比較で見える本質は? 「データ分析の本質とは何か」という視点から、『比較』の重要性に気付かされました。目的達成のために、どの要素を比較すべきかを考える際、目先のことにとらわれず、本質に目を向ける必要があると実感しました。特にクイズ形式の事例は、この点を分かりやすく示してくれました。 経営とデータ活用は? また、経営においては経験や勘も重要ですが、成長とリスクテイクのバランスをとるためにはデータ分析が欠かせないと感じています。現状、社内に十分なデータ活用の文化が根付いていないため、まずは意思決定に役立つデータを整備し、データ活用への理解を深める啓発活動に注力したいと思います。 信頼をどう築く? さらに、データ分析結果の有効性を社内で理解してもらうためには、まず信頼できるデータを整えることが重要です。必要なデータの所在すら不明な状態からのスタートとなるため、地道な取り組みを積み重ねていく覚悟です。

データ・アナリティクス入門

比較で見える学びの真実

Aの有無はどう影響? 分析の本質は、効果があるかどうかを明確にするために、Aがある場合とない場合を直接比較する点にあります。Aの有無で起こる違いを比較することにより、効果の有無がはっきりと浮かび上がります。 比較対象は何を基準に? また、適切な比較対象の選定も重要です。分析したい要素以外の条件を揃える「Apple to Apple」の視点を持つと同時に、成功事例だけでなく失敗したケースも考慮する「生存バイアス」に注意する必要があります。成功だけに目を向けると、誤った判断につながる恐れがあるためです。 学びを活かすには? 今回の学習で特に印象に残ったのは、「分析は比較なり」という考え方です。仕事の場面、たとえば事業計画で事業の方向性を示す根拠や理由を説明する際、比較の手法が非常に役立つと感じました。今後も自分の意見や判断の根拠を示す際に、この考え方を意識して分析に取り組んでいきたいと思います。

アカウンティング入門

ビジネスの真髄をBSで紐解く

BS理解の基礎は? 実際の企業のBSを分析することで、ビジネスとBSの関係性の基礎を学びました。BSを通じてビジネスへの理解が深まることを実感し、多面的に企業を分析できるようになりました。また、企業の経営方針や業種によってBSが変化することも理解しました。 BS利用で見える未来は? 日常の仕事で関わる企業のBSを意識することで、投資やビジネス判断の参考にできることがわかりました。ビジネスの種類や業界によってBSは異なり、さらに同じ業界でも経営方針によって違いが生じることから、一つの情報として使えるという発見もありました。 報告書の読み解きは? 次に、興味のある企業や自分が知っている企業のBSや有価証券報告書を読むことで、学びを深めてみたいと思います。それらの報告書に書かれている内容を吟味し、業種に特有の特徴を考察してみるつもりです。複数の企業を検討し、比較する能力も磨いていきたいと思います。

アカウンティング入門

ビジネスモデル分析で見つけた新たな視点

ビジネスモデルの理解を深めるには? ビジネスモデルによって提供される価値が異なるため、どこに費用がかかり、どのように利益を生み出すかを理解することができました。他社のP/Lを見比べることで、その特徴や費用のかけ方がわかり、彼らの戦略を想像する手がかりになると感じました。 自社の毎月のP/Lをどう読み解く? まず、自社の状況や自分が関わる事業の状態を、毎月のP/Lをしっかりと読み込むことで理解していきたいと思います。そして、単に計画と実績を把握するだけでなく、なぜそのような結果になったのかを検証し、今後の対策に何が必要かを自分の課題として業務に活かしたいと考えています。 直近と過去のP/Lをどう比較する? さらに、直近のP/Lと過去のP/Lを比較して、どの数字がどのように変化しているのかを分析し、現在の自部門の問題点や必要な対策を明確にして、自分のアクションプランに取り入れていくつもりです。

「分析 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right