データ・アナリティクス入門

新鮮発見!幾何平均が拓く売上予測の未来

代表値とばらつきをどう見る? 数値分析では、代表値とばらつきを組み合わせたアプローチを学びました。代表値としては、単純平均、加重平均、幾何平均、中央値が挙げられ、それぞれの特性―単純平均は外れ値に弱く、加重平均は比較対象ごとの重みを反映し、幾何平均は成長率の算出に使い、中央値は外れ値の影響を受けにくい―を理解することができました。また、ばらつきについては標準偏差を用いて平均からの離れ具合を把握します。 幾何平均を感じた理由は? 特に、これまで触れる機会のなかった幾何平均の考え方が新鮮で、分析の幅を広げる一助となりました。 売上予測の具体策は? 売上予測に関しては、過去の傾向をもとにばらつきが少ない項目と大きい項目を整理することで、予測に適した部分とそうでない部分とを区別し、ばらつきが大きい部分には詳細な傾向分析を行う手法を検討したいと考えています。また、ばらつきが小さい項目に対しては、実績値を入力することで自動的に予測を算出できる計算式を構築する仕組みの導入も模索する予定です。

アカウンティング入門

アカウンティングで業務の未来を切り拓く

どうして知識を深める? アカウンティングの知識を習得することで、現在の業務をより高い視点から俯瞰できるようになると考えています。購買部門で働いているため、取引先の選定やコスト決定を担当しています。今後は提案する取引先の財務状況を定量的に分析し、それに基づいて正確な業務提案を行い、上司を説得していくことを目指します。顧客に提供する価値を忘れずに、6週間の講義を継続していきたいです。 どうやって決算を分析する? 担当している取引先の決算情報を正しく把握し、これをもとに将来のサプライヤーやコスト決定の判断材料として活用したいと考えています。また、競合他社の決算状況との比較を通じて、取引先の強みや弱みを整理し、事業の方向性提案につなげることを目指します。 どう学習内容を整理する? 各講義のあと、自社や関係する取引先の決算情報を比較・照合することで、学習内容の理解を深めたいと思っています。特に、自身と関連のある企業を分析対象にすることで、関心を持ち理解度を高めることができると考えます。

データ・アナリティクス入門

目的設定で切り拓く未来

分析ってどう進める? 分析とは、物事を要素ごとに分解して比較することだと考えています。データ分析のプロセスを学んだことで、物事の見方がクリアになり、目的を明確に意識した上で作業を進める大切さを実感しました。分析終了後にどのような状態を目指すのかを具体的に思い描いてから、データの収集や加工に取りかかることで、効率的により良い結論へたどり着きやすくなりました。 目的はどう変わる? また、既存の実績と計画の対比資料については、目的を見直すことで、その後の行動につながる資料に改善できると考えています。新たな課題に対しても、目的をしっかり意識することで、より適切な判断へと結びつけたいと思います。 目的共有で安心? 資料作成に入る前には、まず目的の設定と仮説の作成を十分に検討するため、「データ分析のプロセス」を印刷し、常に見える場所に貼っておくようにしています。自分が資料を作る際のみならず、他の人に作成を依頼する際にも、目的をしっかり共有する説明を心がけ、全体の質向上に努めています。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

業務効率化のカギはデータ分析と説得力!

日々の意思決定は? 業務で日常的に行っている意思決定も、「分析」の結果であるということに気づいた。また、より早く、より良い意思決定を行うためには、「データ」の性質を理解し、効果的な比較を行い、他者が納得しやすいようにグラフ等を使用する必要があることを学んだ。 なぜ運用を変えるのか? 業務効率化を進めるため、新しい運用を推進することが日常的にある。その際、従来のやり方を変えたくないメンバーも多いが、以下のプロセスを踏むことで業務効率化をスムーズに進められるようになると思う。 まず、なぜ運用を変更した方がいいのかをしっかり分析する。そして、反対メンバーが理解し納得しやすいように、グラフ等も活用しながら分析結果を提示する。 学んだ内容をどう活かす? まずはWEEK6までの学習の中で、「分析手法」「データの性質」「それぞれのグラフの特徴」をしっかり自分の身につける。そして、WEEK6までで学んだ内容をすぐに実践に取り入れ、上司やメンバーを巻き込み、業務効率化を達成していく。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

アカウンティング入門

仮説で読み解く利益の秘密

利益の把握はどうなってる? 本業での利益、財務活動後の利益、最終利益といった各利益の数字を通して、経営全体の状態や借金の負担状況などが把握できることを学びました。また、仮説を立て検証するプロセスを通じて、物事をより深く掘り下げることができると実感し、今後は仮説立案の習慣を身に付けたいと思います。さらに、「PL=運動成績表」という表現が非常にしっくりと感じられました。 検証はどのように進む? 具体的には、子会社のPLの変化について自ら仮説を立て、各利益の動向を前月比や前年比で分析、検証していくことを目指します。また、同業他社の比較を通じて、各利益率の違いの背景にある要因を探り、その特徴を明らかにできるようになりたいと考えています。まずは、検証のために用いる分析指標について検討し、同業他社のWEBページに記載されている財務指標を参考に、各社がどの指標に重点を置いているのかを確認。自社との比較を行い、問題点を明確にして改善案の検討につなげていきたいと考えています。

「分析 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right