データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

戦略思考入門

フレーム活用で広がる戦略の可能性

戦略思考はどう磨く? 戦略的に考えるためには、自己の経験や感覚に頼るだけでなく、フレームワークの活用や他者の視点を取り入れながら抜け漏れなく整理することが重要だと学びました。また、フレームワークを使ったとしてもそれだけで万能になるわけではなく、本当に大切な要素を選び抜くセンスと大胆さが求められ、実践を通して戦略的思考を磨く経験が不可欠だと感じています。 分析手法はどうする? 3CやSWOT分析の概要や方法は理解していたものの、実際の業務の場面では十分に活用できていなかったと実感しています。現在携わっている中期戦略の検討において、これらのフレームワークを積極的に取り入れてみたいと考えています。 競合とブランディングは? 特にコーポレートブランディングの領域では、これまではあまりフレームワークを用いてこなかったため、SWOT分析を通じて自社の強みや弱み、外部環境の影響を整理し、3C分析では市場・顧客および競合の状況を評価することに挑戦したいと思います。ただし、3C分析で「競合」の範囲をどの程度広く設定するかについては、引き続き検討が必要と感じています。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

アカウンティング入門

学びを実感!会計知識で未来を開く

なぜ目的意識が重要? ライブ授業で導入部分を学びました。特に、目的意識が非常に重要であると感じました。何のために学ぶのか、そしてそのために具体的に何をするべきかを常に意識しながら授業を受けることにしました。会計知識も重要ですが、それを意思決定に活用できるように深めていきたいと考えています。 財務諸表から何を探る? まず、経営の意思決定に財務諸表を活用できるようになりたいと思っています。財務諸表を読み解くことで、事業をどのように伸ばしていくべきか、また経営上の課題は何か、それに対してどのような対策が必要かといった具体的なアクションにつながる解釈が可能になることを目指しています。さらに、財務諸表から企業活動を具体的にイメージできるようになりたいです。 自習と参考書の効果は? 授業のたびに自習を行い、他の受講生と一緒に学びを深めていきます。できれば、定期的な時間を確保して課題をきちんとこなせるようにしたいです。すでに参考書を購入したので、その書籍を活用し、知識を補強していくつもりです。具体的な活用を常に意識しながら学びを進めていきたいと思います。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値で分かる? データの状況を評価するためには、単純平均、加重平均、幾何平均といった代表値や中央値が用いられます。平均値は計算が簡単で直感的に理解しやすい一方、極端な値(外れ値)の影響を受けやすいという面があります。そのため、データのばらつきを示す標準偏差と併せて確認することが重要です。 小規模店舗見えてる? 複数の店舗の売上やイベントの各店舗での来場者数などを平均値だけで評価すると、店舗ごとの規模や条件の違いから、小規模な店舗や一時的な変化を見落とす可能性があります。こうした場合、標準偏差や中央値などの指標を追加することで、より詳細な状況把握が可能となります。 分析体制整える? レポート作成においては、平均に加え中央値、最頻値、標準偏差など複数の代表値やばらつきの指標を数値化することで、微細な変化に気づきやすい分析体制を整えることが求められます。さらに、ヒストグラムや折れ線グラフ、棒グラフなどを用いて直感的に理解できる分析を行い、Lookerstudioやスプレッドシートでテンプレートをあらかじめ用意しておくと、作業の効率化にも寄与します。

デザイン思考入門

共感から始まる自分改革の物語

共感ってどう伝える? 共感の重要性を強く感じました。特に、どんな場合でも顧客を理解しようと努める姿勢が大切だという点が印象に残りました。 どんなターゲットを狙う? また、共感を通じて顧客のニーズを引き出すことができるため、具体的なターゲットを設定し、その上でアプローチ方法を検討する必要があると学びました。 万人向けは本当に良い? さらに、「万人受けに作ったものは誰にも刺さらない」という考え方から、パーソナライズされた提案をすることがデザイン思考に直結していることが明確になりました。 新しいフローの可能性は? 現状の業務フローに対する不満などを踏まえ、まずは自分自身がユーザーとして共感を実践し、デザイン思考のプロセスを活用して新しいフローの構築を検討していきたいと思います。また、どの部分にこの考え方が活用できるか、日々意識して探していく予定です。 知識をどう活かす? 今回の授業や仲間の意見を参考に、着実に知識を復習し、理解を深めながら、自分にできるかどうか不安もありますが、考え抜くことをやめずに全力で取り組んでいきたいと思います。

クリティカルシンキング入門

分析の視点が変える売上の未来

情報をどう分解? 数字の見方や分け方を工夫することで、異なる分析結果が導き出されたり、隠れていた情報が見えてくることがあります。情報を正確に分解するための手法として、MECE(Mutually Exclusive, Collectively Exhaustive)という考え方があります。情報を層別、変数、プロセスなどの視点から漏れなくダブりなく分解することで、新たな洞察を得ることができます。 売上分析はどう? この方法は販売関連の数値分析においても非常に有用です。例えば、製品の売上分析を行う際には、売上高を売上別、業種別、チャネル別、機能別といった多様な視点で分析することが可能です。これにより、情報の分解や視点の変化が分析に役立つと感じました。 原因分析はどう? 今後、売上情報を分析する際には、MECEを常に意識し、情報の切り方によって得られる洞察の違いを意識しつつ業務を遂行していきます。特に、売上が下がっている場合、その原因を分析する際には、どのポイントに課題があるのかを細かく見つめ、解決策を模索する努力をしていきたいと思います。

クリティカルシンキング入門

伝える力で広がる未来

情報整理はどうする? データのまとめ方や見せ方は、相手への理解を促進する一方で、誤解の原因にもなり得ます。文章に強調を重ねすぎると冗長になり、結果として読みづらくなることもあります。また、文字の色ひとつでも読み手の印象が大きく変わるため、注意が必要です。大切なのは、個性を出すことではなく、一般的に理解しやすい論理的な文章や図解を構成できるかどうかです。 プレゼンはどう見極め? たとえば、パワーポイントを活用したプレゼンテーションや、エクセルを用いた報告・連絡・相談、メール文章作成など、さまざまな場面で役立つ内容だと感じました。どの場面でも、表現が誤解を生まないかどうかを常に意識することが重要です。何気ない色使いが、伝えたい内容と逆の理解を与える可能性もあるからです。 伝達内容は正確? まずは、自分が何を伝えたいのかを明確にすることが不可欠です。図やグラフ、文字の強調は、あくまで伝えたい内容を補強するための要素に過ぎません。完成したら、上司や同僚に確認してもらい、伝えたいことが正しく伝わっているかどうかをチェックすることが大切だと実感しました。

データ・アナリティクス入門

フレームワークで広がる思考の旅

フレームワークで何を学んだ? 3C分析や4P分析といったフレームワークを活用しながら、視点を切り替えて仮説を立てる手法を学びました。これにより、論理的に整理された思考の進め方が身につき、より多角的な分析が可能になると感じました。 複数仮説はどう考える? また、仮説を立てる際には、複数の仮説を同時に考えることや、網羅性を持たせることの重要性を再認識しました。一つの仮説に固執せず、様々な可能性を検討することで、より精度の高い分析が行えると実感しました。 データ収集はどう進める? さらに、データ収集に関しては、既存のデータを活用するパターンと新たにデータを取得するパターンがあることを学びました。新しい情報を得るために必ずしも新たなデータの取得が必要なわけではなく、まずは既存のデータを精査し、そこから仮説を考えることも十分に有効であると理解できました。 次はどう活かす? 以上の学びを踏まえ、フレームワークの理解をさらに深め、網羅性をもって複数の仮説を立てられるように努めるとともに、まずは既存データの見直しから取り組んでいきたいと考えています。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right