データ・アナリティクス入門

ばらつきで読み解く学びの軌跡

なぜばらつき重視? データ全体を把握する中で、ばらつきに注目する重要性を再認識しました。要因分析を行う際、ばらつきを理解することで特定の傾向や変化の大まかな枠組みを捉えられる可能性があると感じます。普段は個別案件や特定のセグメントに意識が向きがちですが、基本的な統計の観点として必ず押さえておくべきだと思いました。また、ばらつきの程度を数値的にどの差や変化として捉えるのが有効かについても関心を持ちました。 営業データの本質は? 例えば、自社の営業データでは、長期的なトレンドは大きく変わらないという認識があり、特定の年度に限った動きが見られなければ大幅な変化はないという思い込みがありました。基本統計としてのばらつきを正確に把握することとともに、数値の背後にある実務上の変化を探るため、定量データだけでなく定性情報にも着目しようと考えました。 分析軸は見直すべき? さらに、データ分析の軸を改めて設定し、その意味を整理する必要性を改めて感じました。特に、データに見られるばらつきが、営業活動の現状を示す行動や外部要因の影響をどのように反映しているのかを把握することが大切だと実感しました。

データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

マーケティング入門

体験でつながる感動の軌跡

どんな体験を創り出す? 商品開発においては、単に製品を作り売るだけでなく、その製品にまつわる体験をパッケージとして展開することが非常に重要だと感じています。これまで「何を売るか」、つまり商品そのものに注目しがちでしたが、今後は「どんな体験を提供したいか」「どのような感動を与えたいか」という体験面に着目した開発を進める必要があると思います。この視点を取り入れることで、既存のものでも新たな体験を創出できる可能性が広がると感じました。 伝え方をどう変える? また、営業店や本部への情報発信についても、現状は商品そのもののみに焦点が当たっていると感じています。これからは、商品を通じてどのような体験が得られるのか、何がどう便利になりどのような問題解決に繋がるのかといった点まで、積極的に発信していくことを意識していきたいと思います。 購入体験で何を感じる? さらに、物を購入する際にどのような体験ができるのかに着目することが大切だと感じています。加えて、広告や販促における表現方法にも注目し、その表現から学べる点を取り入れて、まずは体験を重視した視点をしっかりと持てるよう努めていきたいと思います。

デザイン思考入門

定性分析で見えた地域の本音

地域振興の意義は? まちづくり活動の一環として、自治会の地域振興計画書作成に取り組みました。地域住民へのアンケート結果をもとに、ワークショップで各課題の重大度と緊急性を2軸に評価し、課題を整理する作業を行いました。これにより、まさに定性分析を体感したと実感しています。 定性分析の限界は? ただし、今回の取り組みは定性分析の段階であり、コーディングの考え方までは取り入れていません。そのため、今後、具体的な行動計画の策定や検討において、コーディングを導入する可能性があると感じています。 共通理解の深め方は? また、地域住民の課題感を言語化することが、参加者間の共通理解の深化に寄与し、より有意義なワークショップへとつながると考えています。学びがさらに深まった時点で、実践に移し、その成果を記録していく予定です。 学びの整理方法は? 今回の経験で実施してきた取り組みが一つのフレームワークとして整理されたことは、理解の進展に大いに役立ちました。今後は、この学びを実践に定着させるとともに、同僚や団体のメンバーにも同じフレームワークを十分に説明できるよう、さらなる理解の深化を目指します。

クリティカルシンキング入門

大切な問いに出会う瞬間

イシューの意義は? 今、イシュー、すなわち今考えるべきあるいは答えを出すべき「問い」を特定することが重要です。イシューは、わかりやすい問いの形で提示され、具体的に問いかける必要があります。さらに、組織全体でイシューを共有することで、多様な視点から問題解決に取り組むことが可能となり、議論が本筋から逸れるのを防ぐ効果も期待できます。 医療現場の課題は? 医療の現場においては、組織の存在目的や経営改善、業務効率化、働き方改革、情報共有のあり方など、解決すべき問いが多数存在しています。まずは、解決すべきイシューの優先順位を決定し、それぞれのイシューに対して現状の情報を分解したうえで具体的な問いを提示することが求められます。これにより、根拠のある解決策の提案へとつながります。 会議進行はどう? また、会議の開催時には、あらかじめイシューを明確にし、必要な情報を共有してから議論を始めることが重要です。会議の進行においても、常にイシューを意識しながら進め、適切に問題解決へ導くことが求められます。具体的な問いを提示することで、実効性のあるより良い問題解決策へ結びつけることが期待されます。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

自分の思考をどう? クリティカルシンキングを学ぶとは、自分の思考をチェックする「もう一人の自分」を育てることです。直感や経験則に頼った偏った思考ではなく、客観的に物事を捉えるために、頭の使い方そのものを学ぶ必要があります。 問いを立てるには? この手法は、「問い」を立て、その問いに対して自分の主張と根拠を整理しながら答えを導くプロセスです。特にお客様からの要望に対しては、課題の本質を正確に捉えるためにクリティカルシンキングが欠かせません。適切な問いを設定し、明確な主張と理由を持ってアプローチすることで、より最適な提案が可能となります。 チームでどう共有? また、チームでこのアプローチを共有し、共通の「問い」を持つことにより、全体の方向性が一致し、効率的なチームビルディングが実現できます。一人一人が直感的に安易な答えを出すのではなく、まずは問いを立て、ピラミッドストラクチャーを活用して論理的に組み立てることが重要です。 本当に正しいの? さらに、その立てた問いが本当に正しいのかを常に自問自答する癖をつけ、必ずアウトプットとして形にし、チーム内で共有することが求められます。

戦略思考入門

戦略的思考と技術革新の融合

フレームワークの重要性とは? 人はそれぞれ独自の視点や価値観、バイアスを持っていますが、フレームワークを使うことで個人の視点を超え、より幅広い視点を考慮することが可能になります。さらに、フレームワークは政治、経済、社会、技術、環境といったさまざまな要因の影響を理解するのにも役立ち、その結果、より良い戦略的な意思決定が可能になります。 国際教育業界での経験 現在、私は国際教育業界で働いており、通常は戦略的計画にSWOT分析やPESTLE分析を使っています。しかし、最近の学習により、ポーターの「5つの力」フレームワークについて深く理解する機会がありました。特に、技術の変化が急速に進む中で、新規参入者や代替品の脅威をこれまで以上に慎重に考慮する必要性を痛感しています。 戦略計画への新たな視点 ポーターの「5つの力」フレームワークを現在の職場の戦略計画に取り入れた結果、現在の脅威となっている企業との提携を提案しようと考えています。具体的には、オンラインコースやAIチューターを提供する企業との連携です。こうした提携により、常に一歩先を行き、競争力をさらに高めることが可能だと考えています。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

あなたの学びも変わる仮説の魔法

仮説の全体像は? 仮説とは、ある論点に対して仮の答えを示すものであり、全体像を把握しながら考察を進めるための土台となります。ここでは、結論の仮説と問題解決の仮説という2つの視点があり、それぞれの性格や時系列に応じて中身が変わる点が特徴です。複数の仮説を立てることで、論点全体を網羅的に捉え、さまざまな角度から検討することが可能となります。 問題の原因は? 問題解決の仮説は、具体的な問題の解決を推進するための仮説です。まず、現状を整理し、解決すべき問題が何か(What)を明確にします。次に、その問題の所在(Where)がどこにあるのかを特定し、さらに原因追及(Why)によりなぜその問題が発生しているのかを分析します。最後に対策としてどのように対応すべきか(How)を検討することで、実効性のある解決策を提示できるようになります。 論点整理はどうする? 日常の業務においては、まず現状を正しく把握し、解決すべき論点を洗い出す必要があります。洗い出した各論点に対し、上記のWhat、Where、Why、Howの順に論理的に仮説を整理すると、より具体的で実践的な解決策を構築しやすくなります。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right