リーダーシップ・キャリアビジョン入門

本音と内省で描く未来キャリア

将来像は何が不安? 現在、将来像が明確でなく漠然とした不安を抱えている中、今週の講義を特に楽しみにしていました。今回の学びから、特に以下の二点が印象に残りました。 会社選びはどう変わる? まず一つ目は、会社と自分自身のマッチングの重要性です。これまで自分は「やりたいこと」といった個人的な意志に重きを置いていましたが、組織に所属する以上、「自分が働く場所でどのような課題に向き合い、どんな貢献をしていくか」という視点が必要だと痛感しました。また、キャリア形成においては、自身の内面にある正直な思い(本音)と、組織に合わせた表現(建前)をうまく使い分けることが鍵となると感じました。本音では、業務内容への希望や転勤の希望など、素直な気持ちを見つめ直し、建前ではそれを組織の文脈に沿って表現することで、より実現可能なキャリアプランが描けると思います。 内面との対話は? 二つ目は、自身の内面に向き合うことの大切さです。内面と向き合い、自分の価値観や仕事に対するこだわりを明確にしている上司は、自然にリーダーシップを発揮されていると感じました。自分自身も、これまで内面への向き合いが十分でなかったと反省し、今後は内省を通して、明確なキャリアビジョンを築いていく必要性を実感しました。 視点を整理するには? これらの視点は、今後の取り組みにも活かしたいと考えています。一つ目は、定期的な内省を通じて自分の本音や価値観を整理し、段階的に中長期のキャリア像を固めることです。週次、月次、四半期ごとに自分の感情や考え方の変化を振り返ることで、より具体的な将来像を描いていきたいと思います。 面談の意味は何? もう一つは、上司との定期面談を活用することです。次回の面談の際には、自身の中長期的な将来像を言語化し、組織の課題意識と自分のやりたいことを融合させた形で話を進め、上司からのサポートを得たいと考えています。 知見をどう活かす? この講義で得た知見を活かして、キャリア迷子の状態から脱却し、より明確なキャリアプランを築けるよう努力していきたいと思います。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

クリティカルシンキング入門

今週の学びを振り返って、見えてきた成果と課題とは?

日本語を正しく使うコツは? 今週学んだ内容は「日本語を正しく使う」「文章を評価する」「手順を踏んで書く」の3点であり、これに加えて「ピラミッドストラクチャー」という関連するフレームワークについても学びました。 まず、「日本語を正しく使う」ことに関しては、以下の点を意識しました。主語と述語がつながっているか、隠れた主語がないか、主語が途中で変わっていないか、一文が長すぎないか(60文字程度が適切)を確認しました。 文章評価の視点とは? 次に、「文章を評価する」際には、言いたいことを支える理由がどのような視点で行われているかを考えました。状況や相手によって最適な理由づけが異なるため、複数の理由を考慮した上で、適切なものを選ぶことが重要であると学びました。 手順を踏んで書く秘訣 「手順を踏んで書く」ことについては、全体像を考えつつ骨組みを固めることが大切です。具体的には、「柱を立てる」「柱を支える要素を複数挙げる」「具体化する」「文章にする」というプロセスを踏みます。 ピラミッドストラクチャーの効果とは? ピラミッドストラクチャーについては、メインメッセージ(結論・主張)とキーメッセージ(根拠)で構成され、キーメッセージを深掘りすることです。この構造により、論理の妥当性をチェックしやすくなり、聞き手側が理解しやすい論理展開が可能になります。 例えば、プロジェクトの進捗状況や課題について上司に相談する際には、つらつらと説明するのではなく、結論と根拠を整理することで会話が効率的になり、的確なアドバイスが得られます。 また、ベンダー企業との構想策定や要件定義の場では、主張と根拠を整理することで、理解が促進され、すれ違いを減らし手戻りも少なくなります。 最後に、社内プレゼン用のパワポを作成する際は、ピラミッドストラクチャーを用いて主張と根拠を考慮しながら構成を練ることで、矛盾がなく分かりやすいスライドを作成することができます。 以上の内容を今週学びましたが、これを活用することで、より効果的なコミュニケーションができると感じました。

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

戦略思考入門

持続可能な競争優位性を実現するための秘訣

戦略思考の気付きは何か? 今週の戦略思考で一番気付かされた点は、差別化された状態をいかに維持し続けられるかという点です。あるひとつの時点で見れば、当然新製品を導入するタイミングは自社有利に働きますが、顧客課題を解決できるものであれば、競合も同様のサービスや商品を提供・追従してくる可能性が高まります。そうなると競争の均衡が生じ、価格競争に陥りやすくなります。 継続的な競争優位性はどう維持する? 継続的な競争優位性を維持していくためには、本当の意味での自社の強みを理解し、その強みを生かす必要があります。それが製造ノウハウや技術力であるか、優れた営業スキルを持った人材か、過去に権利化された特許かもしれません。自社に関しては当然一番情報にアクセスしやすい立場にあるので、その強みをしっかりと見極め、いかに競争優位性を維持できるかをデザインしていく必要があります。デザインの見直し頻度も含めて戦略立案・推進していきたいと考えます。 自社の歴史から学ぶ方法は? 自社の歴史を振り返り、競争優位性が保てている商品・サービスとその理由、および保てなくなってきた商品の理由をいくつかのサンプルをピックアップして分析・評価してみたいと思います。その結果、本当の意味での自社の強みを理解し、それを事業戦略立案や商品戦略策定の根拠として活用します。また、それによって関係部門の役員への説得材料としても活用したいと考えています。 来季経営戦略会議に向けた計画は? 11月に全社役員を含む来季経営戦略会議が予定されており、そこをひとつのマイルストーンとしています。そこで戦略方針の提案を行い、承認を得るための計画は以下の通りです。 8月~9月:情報収集・分析。特に最も情報が取りやすい自社で競争優位性を保てているものの分析・評価。各種フレームワークを用いた外部環境・内部環境分析の実施とまとめ、特許情報も含む。 10月:戦略提案内容について関係部門との内容擦り合わせ。 11月:経営戦略会議での提案。 この計画を実行し、持続可能な競争優位性の確立を目指します。

クリティカルシンキング入門

思考を広げる3つの視点チャレンジ

具体的表現を目指す重要性とは? ビジネスで目指したいことは、「具体的かつ易しく、わかりやすい文章で語ること」との冒頭の話を聞き、自分がしばしば「抽象的」かつ「キーワード」で説明しがちであると改めて感じました。印象的だった学びは三つです。 まず、①「三つの視」です。これが非常にわかりやすく、「あえて違う自分」を意識することが、多角的な視点で新たなアイディアを生み出す基本的な考え方だと思いました。視点、視野、視座を意識することで、制限を超えた考えを持つことができます。 ロジックツリーをどう活用する? 次に、②ロジックツリーです。思考の偏りを防ぐための便利なツールとして、仕事以外でも様々な状況で使えると思います。ロジックツリーを構築する際にカテゴリー別に整理する作業が思う以上に楽しめました。今後も上手に活用していきたいです。 具体と抽象のキャッチボールを習得するには? 最後に、③具体と抽象のキャッチボールです。この考え方がまだ習慣になっていない中で、次につなげる思考法がわかりやすく提供されました。②と連動するので、これを意識的に取り入れていきたいです。 グループワークを通じて、自分の思考の偏りが理解でき、他者の意見を聞くことで視野が広がりました。アウトプットの重要性を改めて実感しました。 実践的なアプローチとは? 具体的に実践したいことが二つあります。 1. 意思決定時には、多くの関係者に納得してもらえるために「自分への批判的思考」を意識し、三つの視、とりわけ「視野」と「視座」を意識します。これにより、他者にも納得のいく説明が可能になると考えています。 2. スタッフ育成においては、自分の経験だけで指示するのではなく、相手の思考を意識しながら業務を進め、ZOOMなどを活用してスタッフの学びにつなげていきたいと考えます。異なる考え方を意識してスタッフの話を聞き、相手の視点で考えることで、目標達成へと導いていきたいです。 最後に、意思決定時には、頭の中だけで考えるのではなく、一旦書き出して言語化することを心がけます。

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

クリティカルシンキング入門

相手に伝わりやすくする秘訣

何を学んだの? 相手に伝わる文章を作成するために学んだこととして、印象に残った以下のポイントがあります。 理由は何かな? まず、理由や根拠を明確にする必要があります。何かを伝えたいとき、理由や根拠は多岐にわたりますが、すべてを伝えるのではなく、相手に伝わりやすいものを選択することが重要です。相手との関係性や伝えたい理由をしっかりと考えることが大切だと思いました。 説明の順序は? 次に、ピラミッドストラクチャーを意識して説明することが有用であると感じました。理由や根拠を選んだあとは、それをどのような順序で伝えるかが重要で、キーメッセージを最初に伝え、それを補足する内容を整理して提示することで、自分にも相手にも分かりやすい説明が可能になります。 伝え方、変えてる? また、人材を伝える際には、その人材の業界や特徴に応じて伝え方を変えることが大切です。その理由を2つに絞って、ピラミッドストラクチャーを意識しながら説明することでより効果的に伝えることができると思いました。 会議はどう進む? さらに、人材育成ミーティングでは、関係者それぞれの課題意識や会社のゴールを考慮し、目的を明確にして進めていくことが重要です。参加者全員の立場や役割が異なるため、互いを尊重したコミュニケーションが大切だと思います。 伝えすぎてる? 私自身の伝え方や文章作成の特徴として、注意すべき点が2つあります。まず、理由や根拠を多く伝えすぎる傾向です。情報をたくさん伝えようとしすぎて、相手の理解が追いつかないことがあります。参加者ごとに必要な情報は異なるので、適切な情報を選んで伝えることを心がけたいです。 数値だけで十分? そして、数値やデータを根拠にしがちな点です。クリティカルシンキングでは数値やデータの重要性が強調されていましたが、必ずしもそれが必要な情報でないこともあると気づきました。新規事業や戦略策定ではデータがない場合も多く、無理に関連の薄いデータを用いるのではなく、適切な理由や情報を選択する柔軟性が必要だと感じています。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

データ・アナリティクス入門

学びの武器:ロジックツリーとMECE活用法

ロジックツリーとMECEの理解を深める 今回の学びで【ロジックツリー】と【MECE】についてしっかり理解することができました。これまで漠然と理解していたものの、具体的な分析には活用していなかったため、今後の分析に役立てたいと思います。ただし、【感度の良い切り口】を選ぶことが実践では難しいと感じており、特訓が必要だと考えています。今後は、これまでの成功と失敗の分析例を見比べ、感度の良い切り口を探っていきたいと思います。 分析力を向上させるための反省点 私は構造的に物事を分解して考えることが苦手で、【ロジックツリー】や【言語化】によって頭の中で考えていたことを正確に表現できていませんでした。その結果、要因分析の精度が不足していたと反省しています。この学びを経て、より効果的な分析ができるよう努める所存です。もともと時間がかかることもありますが、繰り返し実践し、自分のものにしていきたいです。 実践によるスキルの習得 早速、【ロジックツリー】や【MECE】を日々のデータ分析業務に取り入れ、課題解決に役立てたいと思います。これまでなんとなく分析しており、【what】【where】【why】【how】を頭の中で考えながらも【可視化】や【言語化】していないことが原因で、正確性に欠けていました。恐らく、【感度の良い切り口】が間違っていた可能性もあると反省しています。今後は学んだことを実践に取り入れ、分析の精度を高めていきます。 日々の実践がスキルアップの鍵? 日々の分析で【ロジックツリー】、【MECE】、【感度の良い切り口】を身に付けるためには、繰り返しの実践が大切です。そのために、同僚が利用している【ミニホワイトボード】を購入し、何度も書き出していくつかの切り口を見極めていこうと思います。確定したら、エクセルに【背景】【目的】【仮説】【ロジックツリー】【5W1H】をまとめ、事前に整理した資料をもとに適切なデータを見極めていきます。自分なりの考察をまとめた後は、依頼者と振り返り議論を通じて、より正確な要因分析が行えるよう努めます。

戦略思考入門

選択と捨てる勇気で生み出す価値

戦略の選択は? 戦略における選択、つまり「捨てる」ことについて、ITベンダーの営業マンシミュレーションで学びました。個人のリソースには限りがあるため、何をやるか、何を捨てるかの優先順位を付けることが重要だと再確認しました。 判断の軸は? 惰性で業務を進めるのではなく、しっかりとした判断軸を持ち、それに基づいて考える必要があります。優先順位を付ける方法として、定量的なエビデンスに基づいた考え方に加え、ROI(投資対効果)を考慮することも大切であることを新たに認識しました。 視野を広げる? また、個人的な視点だけでは見落としがあるかもしれず、全体を俯瞰できない可能性があります。このため、集合知を活用し、他者と意見交換や相談を行うことが重要だと感じました。 新たな気づきは? 動画で得たその他の気づきとしては、捨てることが顧客の利便性を増す場合があること、惰性に流されないこと、新参者の意見を聞くこと、餅は餅屋に任せることなどがあります。特に、垂直統合からの脱却や外注の活用について学びました。 業務の見直しは? 現在の職務では、効率化・高品質化を中心に取り組んでおり、取捨選択をある程度行っていると認識しています。しかし、実際に引き受ける業務には無駄やムラが含まれている可能性があります。これを選別し、より良い処理方法を見つけるために、今回学んだことを活かしたいと感じました。ただし、人間との関係も大切なので、単に定量的な結果や事実を伝えるだけでなく、依頼者の心情に寄り添った対応が重要だとも感じました。 引き算の意味は? 既存業務や新規業務に対して、足し算だけでなく引き算の視点を持つことを意識します。捨てる選択をしてこなかったので、組織としても個人としても抵抗を感じるかもしれませんが、定量的な数値結果や俯瞰的な視野を持ち、情報共有や提案方法を模索していきます。これらを考慮して、同僚や上司に対して恐れず提案する勇気を持ち続けたいと思います。「それ、無くても困らないのでは?」という問いを自分に向けていこうと思います。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right