マーケティング入門

顧客目線でマーケティング戦略を見直す方法

顧客目線をどう捉えるか? マーケティングの基礎として、顧客目線で考えることが前提です。その上で、イノベーションの普及条件(5つの条件)と照らし合わせることにより、市場の立ち位置や比較がより明確になります。 行動変数で顧客を理解? 顧客のセグメンテーションを検討する際には、デモグラフィックだけでなく、趣味や思考、価値観などの行動変数も考慮すると、顧客像を多角的に把握できます。これにより、市場のトレンドを捉えることが可能となります。 さらに、成長性を評価する6Rなどのスクリーニングを行うと、ターゲティングが現実的になり、場合によってはターゲティングの変更も視野に入れることができます。 ネーミングで価値をどう伝える? ネーミングをする際も、顧客が抱く「負のイメージ」を想定し、それを解消することが重要です。これにより、顧客が求める価値を理解し、自社製品の価値を効果的に伝えることができます。 ただし、競合と比較して製品開発やプロモーションに集中しすぎると、「差別化の罠」に陥ることがあります。本来提供すべき価値を見失い、競合との差別点ばかりに焦点を当てる危険性があります。マーケッターとしては、この点にも注意が必要です。 結果として学んだことは、顧客が常に起点であることを理解し、様々な関係性をフレームとして当てはめることです。 SNS戦略で何を重視する? 自社のECサイトやSNSでの戦略構築においても同様で、顧客目線の整理、行動変数による理解、そして6Rを鑑みた顧客理解が必要です。主観に頼らず、顧客が何を求めているのかを理解し、コミュニケーションを図る戦略立案が求められます。主観でSNSの発信内容を決定するのではなく、顧客との接点を心理的変数で設定することを実行したいと思います。 コーポレートSNSでは次のステップが必要です: 1. フォロワーのサイコグラフィック変数を導き出す。 2. 顧客理解を基に、6Rスクリーンニングの仮説でターゲット理解と機会を洗い出す。 3. 競合とのポジショニングを考慮し、実行すべき戦術を決定する。 4. その測定を繰り返すフレームワークの作成を実践する。

データ・アナリティクス入門

ナノ単科で挑む仮説の実践

仮説って何? ビジネス現場での仮説とは、ある論点に対する暫定的な答えを示すものであり、大きく「結論の仮説」と「問題解決の仮説」に分けられます。状況に応じて、過去・現在・未来それぞれで仮説の内容が変わる点も特徴です。 解決と結論は? 問題解決の仮説は、具体的な課題に対して原因を究明するためのものです。一方、結論の仮説は、たとえば新規事業においてある論点への暫定的な答えを示す際に用いられます。 4ステップの流れは? 問題解決のプロセスは、次の4つのステップで進めます。まず、Whatとして問題が何であるか、またその規模を把握します。次にWhere、すなわち問題の所在を特定します。その後Whyとして、なぜその問題が発生したのか原因を追及し、最後にHow、どのように対策すべきかを検討します。 仮説はどう練る? 仮説を立てる際には、決め打ちせず複数の仮説を考えることが重要です。異なる観点や組み合わせから仮説を立てることで、情報の扱いに網羅性が生まれ、柔軟な解決策を導く助けとなります。 現状把握は大事? 施策の検討では、すぐに解決策に飛びつかず、まずは現状を十分に把握することが求められます。たとえば、見込み顧客を効率的に集めたい場合、SEO対策やウェビナーをすぐに試みるのではなく、なぜ見込み顧客が増えないのか、実際に問い合わせをしてくれる顧客の層やニーズを確認した上で仮説を立て、ABテストなどで検証するプロセスが大切です。 営業仮説の効果は? また、営業面においても、現状の状況・業務上の問題・その影響、そして解決された場合のメリットを問い直すことで、仮説の思考は効果を発揮します。これは、営業メソッドであるSPINの各質問(状況質問、問題質問、示唆質問、解決質問)とも通じる考え方です。 顧客行動はどう見る? さらに、顧客の行動分析の際は、カスタマージャーニーマップを作成するにあたって、こちらの期待する行動ではなく、顧客のインタビューを通じた実際の行動パターンをデータ化・可視化し、どのステップで課題が生じているかを明確にすることが重要です。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

データ・アナリティクス入門

仮説思考で成果を引き出す方法を学んで

仮説思考をどう浸透させる? 今回の学びで、仮説とは何か、その明確な答えと種類について理解を深めることができました。これにより、今後同僚に仮説思考を浸透させる際に非常に役立つ知見を得られました。 データ収集の重要性とは? 特に印象に残ったのは、仮説を検証する際には都合の良いデータだけでなく、そうでないデータも集めることの重要性です。これは当たり前のことですが、自分の仮説を成立させるために都合の良いデータを集めがちであることに気づかされました。また、仮説を用いて社内外のステークホルダーを説得するには、多くの状況証拠を集めて分析することの重要性を再認識しました。 行動を深める仮説活用法 私は仮説をもって行動することの重要性を感じています。失敗しても「なぜ失敗したのか」を検証しやすくなるためです。今週の学習では、仮説を正しく用いることで説得力が増し、行動のスピードと精度も上がるという点に感銘を受けました。この学びを次週以降の学習でさらに深めたいと思っています。 成功体験に頼らないためには? 仮説の重要性やその価値を同僚に伝え、仮説思考を普及させることで、事業部の政策決定や担当者の行動が効率化されることを期待しています。過去の成功体験に依存する傾向がある事業部では、なぜ成功したのか、そして今も通用するのかを検証せずに同じ施策を繰り返しがちです。これは「問題解決の仮説」ができていない証と考えます。仮説思考の重要性を学んだので、これまでの取り組みを再考したいと思っています。 キャンペーン効果の再評価を 具体的には、事業部が定期的に行うキャンペーンやインセンティブについて、その効果を費用面だけでなく当時の外部環境も踏まえて検証しようと思います。これまでは、仲の良い同僚や上司と問題提起を行い理解を得られていましたが、それを全体に普及させることはできていませんでした。次週以降の具体的な方法を適用するための準備として、多様なデータを集めることから始めようと思います。その際、都合の悪いデータも取得することを忘れずに行いたいです。この週の気づきを早速実務に反映していきたいと思います。

データ・アナリティクス入門

多角的仮説から導く成功の鍵

なぜ仮説を複数持つ? まず、常に複数の仮説を立て、一つに決め打ちせず、各仮説が原因を多角的に網羅できるように意識することが重要です。どこに原因があるのか、何が原因なのかという点について、切り口を変えて考える必要があります。 比較指標はどう決める? 次に、仮説を検証する際は、何を比較の指標にするかを明確に決めた上で、どこに注目し、何と何を比較するのかという意図を持つことが大切です。 データ収集の方法は? また、データ収集においては、対象者(誰に聞くか)と方法(どのように聞くか)をしっかり考え、たとえ反論になり得る情報も排除されずに集めるよう努める必要があります。これにより、比較のためのデータが十分に得られ、偏りのない分析が可能となります。 仮説の使い分けは? さらに、結論を導くための仮説と問題解決を目指す仮説を明確に区別しながら取り扱うことが求められます。普段は特許情報やその他の情報を用いていますが、さまざまな立場(営業、技術、知財など)から情報を収集する際には、ネガティブなデータが除外されていないかを意識することが重要です。 議論で論点はずれる? 実際に、立場の異なる関係者による議論の場では、「課題」の共通認識が不十分なために、結論の仮説と問題解決の仮説が混同され、論点がずれてしまい、適切な結論に至らないケースが見受けられました。特に、人からの情報は各立場の主観が影響して、情報の取捨選択が無意識に行われることが多いため注意が必要です。 課題はどう分析する? このような背景から、「課題」が何で、どの仮説に基づいて何を分析するのか、また、仮説、比較の指標、意図がぶれないようにしっかりと管理する必要があります。仮説を早期に決め付けたり、先入観に頼ってとりあえずデータを分析したりする危険性があるので、まず観点を整理し、複数の仮説を立てた上で深堀し、必要なデータを洗い出して収集することが求められます。 決め付けはなぜ危険? さらに、結論を導く仮説にするのか、問題解決の仮説にするのかを明確にした上で、上記のプロセスに従い取り組むことが大切です。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

クリティカルシンキング入門

データ解析で見える新たな地平線

解像度の高い情報化方法は? 単なる数値データを解像度高く意味のある情報にするための方法について考えました。まず、データの加工では、比率を見たり加算したりとひと手間加えることで、情報を活用できる状態にします。また、グラフ化することで、数字では見えづらかった傾向を視覚化し、理解を深めることができます。 データ分解のポイントは? データの分け方については、グラフ化した後にどの粒度で分けるかが重要です。機械的に分けるのではなく、仮説を持って複数のパターンを試行錯誤することで、有意義なデータを導き出すことができると考えています。分解のポイントとしては、事柄を「いつ、誰が、どのように」といった複数の視点から見ることが重要です。分解した結果、傾向が見えない場合でも、その視点では傾向が見られないという意義のある結果になります。さまざまな切り口で分解し、一度立ち止まって本当に正しいのかを考えることも大切です。 MECEに基づく問題解決とは? 問題解決のステップを踏む上では、MECE(モレなく、ダブりなく)を意識します。MECEの切り口には、全体を定義して部分に分ける層別分解、事象を変数で分ける変数分解、ある事象に至るプロセスで分けるプロセス分解などがあります。これにより、モレなく網羅的な分析が可能になります。 フィードバックの重要性 最後に、物事をMECEを軸に分解して考える際、考え方の偏りによってモレなくという部分が満たせなくなることがあるため、自身の考えの癖を常に意識し、他者からのフィードバックを受けて手法の精度を高める必要があります。また、分析結果が仮定と近い場合でも、すぐに結論付けず、一歩踏み止まって再考する習慣を大切にしたいと考えます。 システム運用の問題予防はどうする? システム運用における問題予防の観点では、膨大な数値データの中から意味を見つけ出し、データを扱う方法を変えていくことが重要です。H/W、M/W、NWの性能レポートや監視ツールのデータから、予防保守という視点で今後起こり得る問題の傾向を掴むようにデータを活用していきたいと思います。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

クリティカルシンキング入門

クリティカルシンキングで開花する新たな視野

クリティカルシンキングの重要性とは? クリティカルシンキングは、すべての専門スキルの土台となります。人は「偏り」や「制約」の中で思考しているため、「3つの視(視点・視座・視野)」を意識することが大切です。これまで、人が自分が考えやすいことに寄ってしまうことは当たり前だと思い、意識していませんでした。今後は、自身の成長のために「意識していなかったことを意識して取り組む」ことを習慣づけたいと思います。 グループワークで得た新たな発見とは? 他者の考えを聞くことで、新たな発見や気づきを得ることが重要です。また、いかに自分が無意識に「偏り」と「制約」の中で思考しているかを認識しました。今後、グループワークのスムーズな進行を目指して、チーム内で短時間で結論をまとめるためのファシリテーションスキルを向上させたいと思います。 仮説検証計画で大切にすべきことは? 論理的思考を持って、施策の目的を整理し、仮説を立て、期待できる効果を見据え、検証方法を把握することが大切です。視野を広く持ち、他部署だけでなく会社全体への影響を考慮した施策検討を行うことが肝要です。 効果的なコミュニケーションの取り方は? 「自分が相手を理解」し、「相手に自分の考えが伝わる」やりとりを心掛ける必要があります。相手が「何を知りたいのか」を引き出すコミュニケーションや想像力を鍛え、相手の立場や状況を加味した伝え方を意識することが重要です。 まずは、学びの1週目として、日常的に論理的思考を実践するため以下に取り組みたいと思います。 リモートワークでの効果的なチャット術とは? 当社はリモートワークが多く、上司も会議が多いため、チャットでのやりとりがメインになっています。特に上司は大量にくるチャットをさばきながら重要事項を頭に入れなくてはなりません。 そこで、「相手が知りたいこと」や「自分が伝えたい要点」がわかりやすい文章構成を意識したチャット文章のやりとりを心掛けたいです。そして、論理的な「文章(考えを練る時間がある)」から「会話(即興)」へと、アウトプットのレベルを上げていきたいと思います。

データ・アナリティクス入門

目的と仮説で切り拓く未来

比較の本質って何? これまでのデータ分析において、私は「分析の本質は比較である」という点を十分に理解していなかったと感じています。適切なデータ選定ができず、チーム内で議論する際にも目的が曖昧であったため、集合データをそのまま使ってしまい、結果として具体的な結論に至らなかったケースが多くありました。 仮説は本当に必要? また、分析はあくまで目的を達成するための手段であるにもかかわらず、そのプロセスにおいて「仮説を立てる」という基本的なステップを十分に意識せずに進めてしまっていたことも大きな問題でした。 分析準備は万全? こうした経験から、まずデータ分析に入る前の準備段階を丁寧に実施することの重要性を痛感しました。具体的には、分析の目的を明確にし、仮説をしっかりと立てること。そして、分析の途中で常に最初の目的に沿って進んでいるかを確認する習慣が必要であると感じています。 依頼目的は明確? 業務の現場では、依頼元が提示する抽象的な目的に基づいて競合や市場の動向、新たな開発分野の抽出などが求められる中、漠然とした依頼内容のままで分析を進めてしまうケースがあります。その結果、得られたデータが本当に必要な情報を反映しているのか疑問が残る場合があり、依頼元側も求める結果が得られていないと感じることが少なくありません。 質向上の秘訣は何? 今回学んだ内容は、まさにこうした状況で活かすことができると考えています。相手が何を知りたいのか、抽象的な目的を具体的に落とし込み、既知の情報などを基に仮説を立てることにより、アウトプットの質を向上させられると実感しました。また、個人としてだけでなく、チーム全体で取り組む際には以下の点を共有し、実践していくことが重要です。 チーム内の確認はどう? まず、分析の目的を明確にし、チーム全体で統一した見解を持つこと。次に、分析前に十分な仮説を立てること、現状を正確に把握すること、分析対象のデータが適正かどうかを確認すること。そして、分析の途中で常に最初の目的に沿っているかどうかをチーム内で確認し合うことが大切だと考えています。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right