データ・アナリティクス入門

データ分析でビジネスを変革する方法

「分析の目的」をどう明確化する? 分析のポイントを誤ると意味がなくなるため、「何のために」「どの部分を」分析するのかを明確にする必要があります。数字を見る際には、その意味がはっきり理解できなければなりません。特に知識がない人にもわかりやすい数字の提示の仕方が重要です。 ビッグデータ活用の効果とは? ビジネスにおいて、数字はある程度の説得材料となり、クライアントにとっても理解しやすいものです。ビッグデータを活用して根拠資料としてクライアントにわかりやすく伝えることができれば、分析の意義は高まり、ビジネスチャンスも広がります。 分析力を高めるステップ まずは分析の基礎を固めることから始め、目的や意図を明確にすることで分析力を身につけます。それにより、根拠のある資料を作成しクライアントに明確性をもって伝達できるようになり、結果としてビジネスチャンスも広がるでしょう。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

マーケティング入門

ポジショニングの力でターゲットを引き寄せる学び

ポジショニングの重要性を学ぶ 商品戦略を考える上で、ポジショニングの重要性を学びました。具体例として、ワークマンやポッキーの事例が挙げられます。これらの企業は、商品自体に変更を加えず、ターゲットに対する価値の整理を行うことで、ヒット商品を生み出しました。これにより、新商品を考えることが必ずしも最適解ではないと理解しました。 新たな価値提案の方法は? 我が社においても、既存の商品や事業に対して、新製品の開発や全く異なるセグメントの検討を急ぐのではなく、訴求ポイントを整理することで新たな価値を顧客に提案できると考えます。 差別化マップで見える化する 具体的には、まず自社の製品の特徴を洗い出し、顧客のニーズを整理した上で、顧客に訴求するポイントを明確にします。その後、ライバルとの差別化を図るため、差が明確に伝わるポジショニングマップを作成することが重要です。

戦略思考入門

ターゲット力で差をつける戦略術

ターゲットは誰? ターゲット顧客の明確化は、差別化戦略を構築する上で非常に重要だと感じました。どの顧客層に注力するのかをはっきりさせることで、何を行い何を行わないかといった戦略の基盤が固まります。また、外部環境を把握するためのPEST分析や、内部資源を評価するためのVRIO分析といった手法を組み合わせることで、自社の強みを活かした戦略立案ができると実感しました。 模倣と組織はどう見る? さらに、VRIO分析においては特に模倣困難性と組織的観点に注目することが重要です。他社にはない自社独自のリソース、たとえば蓄積された暗黙知や歴史、文化などを言語化し整理することで、企業としてのユニークな価値が際立つと考えます。また、ポジショニング理論とRBVの視点を併せ持つことで、コストリーダーシップなど自社の立ち位置を多角的に見直し、戦略を更に強化することが可能になると思います。

クリティカルシンキング入門

目で伝える!プレゼン術

どう視覚情報を伝える? 今週は、相手に視覚で理解してもらうためのプレゼンテーションテクニックについて学びました。相手に情報を探らせるのではなく、グラフやイラスト、色や装飾を用いるなど、具体的な手法で意図を明確に伝えることの大切さを実感しました。情報を伝える目的、立場、そしてどの部分を理解してほしいかを明確にすることで、伝わりやすさが大きく向上することがわかりました。 どう資料を工夫する? また、日々のプレゼン資料作成において、これまで意識できていなかったテクニックを取り入れることの重要性を再認識しました。特に、アイキャッチの効果や意外性、具体性を強調することで、受け手の興味を引き、情報を効果的に伝える工夫ができると感じています。今後は、これらのテクニックを意識して資料作成に取り組み、さらに読みやすくわかりやすいメール文も作成するよう努めていきたいと思います。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

データ・アナリティクス入門

目的から逸れずに効率UP!分析のコツ

目的設定はなぜ重要? 目的と比較の設定は非常に重要です。特に他者に仕事を依頼する際は、これが鍵となります。分析においても、目的に沿った意味のある係数と、そうでないものを見極める必要があります。目的によってその意味は変わり、使い方次第では係数の有無も変わってきます。 自己分析で気をつける点は? 自己分析の際も、目的からぶれないことが重要であり、目的に応じた答えや提案が含まれるインサイトを得られるかを考慮する必要があります。チームに依頼する際も同様に、彼らの仕事が意味を持つよう、効率化できるポイントを設定します。 比較時に確認すべきことは? 何が目的なのかを明確に書き出し、何をどの観点から比較したいかを考慮します。また、目的から逸れそうになったら立ち返って確認することが大切です。比較がきちんと同じ条件下で行われているかも再度確認しなければなりません。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

クリティカルシンキング入門

データ整理の極意と深掘りのコツ

情報整理の重要性とは? 情報の分け方に漏れや重複があると、データの理解がぼやけてしまうことがわかりました。情報の分け方を工夫することで、伝えたいことをより明確にすることができます。また、漏れや重複は一度書き出して整理するとわかりやすく感じました。 効率的な分解方法を探る 全体像と把握したいことを明確にしたうえで分解に取り掛かるようにし、その際はいろいろな視点や切り口で考えられるように、まず書き出して整理してみます。分解後のデータを見て、他の視点や切り口がないかさらに深掘りしてみることも重要です。 問題分解の実践法を学ぶには? 問題分解の実例を知り、一度自分で解いてみることで習得しました。特にプロセス分解は頭で理解していると疎かになりがちなので、ステップごとに分解をして一つひとつ深掘りしてみます。また、書き出して整理する習慣も習得したいと感じました。

クリティカルシンキング入門

生の声が照らす学びの扉

伝え方は大丈夫? 物事を伝える際は、まず相手が何を知りたいのかを理解し、主語と述語の関係を明確にすることが大切だと感じました。また、文章が長くなりすぎず、簡潔にまとめることで伝わりやすさが向上すると考えています。これらの点は、プレゼンや上司・部下とのコミュニケーションにも活かされると実感しています。 効果説明は的確? 私は求人広告の営業職として働いており、お客様に現在の効果状況を説明する際、何がどのようになっているのかをはっきりと伝えることを心がけています。分かりやすい言葉選びにも意識を向け、誤解が生じないよう努めています。 論理整理できた? また、説明する前には、内容が論理的に構成されているか、分かりにくい表現が含まれていないかを確認しています。主語と述語の関係を明確にすることで、余計な情報を省き、伝えたいことが確実に伝わるように工夫しています。

データ・アナリティクス入門

比較が切り拓く使いこなしの未来

比較って何が重要? 分析というと、難しい数字を使った調査と思われがちですが、本質は「比較」であると学びました。比較は、目の前にあるもの同士だけでなく、目的に応じて見えていない要素も想像して行う場合があります。 活用状況はどうする? プロダクトにおける顧客の活用状況では、十分に使いこなせていないケースの課題を抽出し、もししっかり活用できた場合のシミュレーションを定量的な数値で示すことが重要です。こうして、利用促進のきっかけを提供すると同時に、プロダクト自体の改善点にも繋げられると実感しました。 目的はどう定める? また、比較対象を決める際には、分析の目的と照らし合わせながら選定することの大切さを学びました。私自身、問題が発生した時に手段に頼りがちな傾向がありますが、今後は目的を明確に定義し、しっかりと把握する意識を一層高めていきたいと思います。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

「明確」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right