クリティカルシンキング入門

営業プロセスの巧みな分解で成果倍増

どのようにプロセスを整理する? 営業成績を振り返る際に、プロセスをMECE(Mutually Exclusive, Collectively Exhaustive)に分解して整理するという視点が欠けていました。プロセスの分解自体は行っていたものの、その後の分析が不十分だったと感じています。今後は、この点を業務に活かしていきたいと思います。 問題解決に向けた分解思考 営業活動において、顧客を業界や職種で分解するだけでなく、自分の仕事のプロセスも細かく分解しました。その結果、どこに要因があり、何を解決すれば問題の特定につながるのかが明確になりました。このような分解という思考を、日々の活動に取り入れていきます。 課題特定のためのアプローチは? 具体的には、まず自分の営業プロセスを分解し、どこに課題があるか特定します。次に、顧客と受注の傾向も分解し、その中で自分の課題やポジティブな傾向を探っていきます。さらに、このアプローチを部下にも活用していこうと考えています。

リーダーシップ・キャリアビジョン入門

知識を実践に変える日々の挑戦

なぜ行動が大切? 振り返ることの大切さを改めて実感しました。リーダーシップやキャリアビジョンの講義では、単に知識を得るだけでなく、実際に行動に移すことの重要性を学びました。講義の内容を覚えているだけでは、せっかくの学びが無駄になってしまうと感じました。 どう原則を実践? また、リーダーシップやキャリアビジョン自体は、シンプルな原則に基づいたものだと実感しました。その原則を日々の業務に継続して落とし込むことが、最も大きな課題だと思います。たとえ部下を持っていなくても、業務上の困難に直面した際には、今回の講座で得た学びを思い出すことで、解決へのヒントが見つかるのではないかと考えています。 何故記録するのか? この学びを忘れないために、普段持ち歩く手帳に講座で学んだ内容や気付きを記録することにしました。業務でうまくいかなかった経験や、現状の課題に直面した際、当時何を学んだのか、そこから今に繋がるアイデアがないかを自分に問いかけるようにしていこうと思います。

データ・アナリティクス入門

仮説で輝く成長ストーリー

仮説ってどう捉える? 今回の学習を通じて、仮説の意味や分類、そしてその意義について理解が深まりました。仮説とは、ある論点に対する仮の答えであり、主に二つの分類に分けられると知りました。一つは、論点に対する仮の答えを示す「結論の仮説」、そしてもう一つは、具体的な問題の解決を推進するための「問題解決の仮説」です。 仮説意義はどう? また、仮説を考えることの意義として、検証マインドの向上やそれに伴う説得力の強化、関心や問題意識の向上、スピードアップ、行動の精度向上が挙げられることを学びました。これまでこれらのポイントを特に意識することはなかったものの、今後はこれらを意識しながら仮説を活用していくことが大切だと感じました。 印象は何が響く? 特に印象に残ったのは、「仮説を考えることの意義」についての内容です。日々の業務において、検証マインドの向上、問題意識の深化、スピードアップ、そして行動の精度向上を意識して対応することで、より効果的な問題解決が図れると確信しました。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

戦略思考入門

トヨタ式自動化で仕事の質が進化!

最適な方法とは? トレードオフについて学ぶ中で、相対的なメリットをどちらか一方だけ追求することにばかり気を取られていました。しかし、トヨタの自動化の考え方に触れ、目から鱗が落ちる思いでした。現状に対して最適な方法とは何かを常に考えることが大切であり、そのマインドを身につける必要性を痛感しました。 ミッションの見直しは? 時間は有限で、やるべきことをひたすらこなすことに追われていた日々ですが、学びを深める中で現在の仕事において捨てても良いかもしれないミッションがいくつか浮かびました。これらのミッションを捨てる理由についてもしっかりと考えていきたいと思います。 来季はどうする? まずは今年のすべてのミッションをしっかりとこなすことが目標です。しかし、来季も同じことを繰り返すだけで良いのか?それが本当に必要なのかを見直し、惰性に陥らないよう再検討して企業に提案したいと考えています。現状と来季の効率性に変化をもたらし、それを実感できるようにしたいです。

リーダーシップ・キャリアビジョン入門

仕事の本質と目的を見極めるヒント

仕事のゴールを確認する理由は? 仕事を任されたときは、まず相手が考えるゴールが自分の認識と一致しているかを確認することが重要です。また、自分が上司であった場合、部下に仕事を依頼する際に、逆の立場でどう感じるかを想像することが大切だと感じました。 依頼された仕事はどう慎重に取り扱う? 現在、部下を持たない私にとっては、周囲から依頼された仕事に対して、そのゴールが正しいかを確認する必要があります。仕事の意義についても、日々の業務が会社の目的とどのように結びついているのかを理解することが重要です。それを怠った場合、周囲にどのような影響を及ぼすのかを考える習慣を持つことが求められます。 仕事の最終目的は何かを理解するには? したがって、仕事を依頼された際には、その内容が適切かどうかを必ず確認する癖をつけることに努めます。そして、今の仕事が最終的に何につながっているのかを考え、それをスキップした場合に周囲にどのような影響があるのかを想像していくようにします。

クリティカルシンキング入門

「数字を読み解く力を鍛える!」

わかった気になることのリスクは? わかった気にならないことが大事だと学びました。上辺だけの数字に惑わされず、数字の分解、それらをしっかり可視化し、解像度を上げることが重要です。数字だけを見てわかった気になるのは仕事でも陥りやすいことだと思うので、日々の仕事でも意識したいと考えています。 意思決定に必要な定量的根拠とは? 仕事の立場上、フラットに俯瞰的な目で意思決定をする場面があります。誰もがその意思決定に納得できる形にするためには、定量的な根拠が必須です。物事を分解し要所を理解することで、説得力が向上すると思います。早速実践に移したいと考えています。 数字を分解するためのステップ 数字の分解はまず場数を踏むことが大切です。さらに、分解した内容を他の人にも見てもらいフィードバックをもらうことを意識したいです。そのうえで、数字の分解だけにこだわるのではなく、可視化や図式化などビジュアル化して、今以上のアウトプットを出せるようチャレンジしたいと思います。

クリティカルシンキング入門

忙しさの中で見つけた成長の種

なぜ振り返る必要がある? 6週間を振り返った結果、日々の業務に追われ、全てのことを実践するのは難しいと改めて実感しました。しかし、同じような状況にある他の受講者の姿を見て、まずは研修内容を忘れないように振り返り、まとめることに努めています。その後は、できることから一つずつ実践し、自分のものにしていこうと考えています。 管理職準備はどう進む? 4月から管理職に就くにあたり、まずは目の前の課題に直結する「3つの視」に取り組む予定です。自分の周囲だけではなく、客観的な自分自身や、自分がどの程度影響を与えられているか、またどのような人々に喜びを提供できるかを考えながら、日々の行動を見直していきます。 行動の見直しはどう? 毎日帰宅時には、その日の行動や思考を振り返り、「3つの視」を十分に活かせたかをチェックします。もし不足している部分があれば、その原因を自問し、客観的な自分と本能的な自分との間でバランスを取りながら、実践経験を積んでいく所存です。

データ・アナリティクス入門

問題解決を極める!MECE活用法

問題解決プロセスはどうする? 問題解決のステップであるWhat/Where/Why/Howを実施する際、MECE(モレなくダブりなく)に留意して問題を切り分け、明確化することは、普段の業務でも自然に行っています。しかし、これを改めて整理すると、より理解が深まることを実感しました。 部下の問題対応をどう支援する? 実務においても、問題に対してモレなくダブりなく切り分けて明確化し、要因分析を行えているかを確認したいと考えています。部下から日々さまざまな問題が報告される中で、この点が確実にできているかを検証し、対策をまとめるサポートをしていきたいと思っています。 部門内の案件をどう分析する? 直近で部門内で問題となっている案件を選び、それぞれの担当者がどのように問題の要素分析を行い、どのような検討を経て対策を導き出しているのかを確認したいと考えています。特に要素分析の段階でMECEをしっかりと実施できているかを重視して見ていきたいです。

「日々」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right