データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

アカウンティング入門

財務分析で企業の真価を見抜く方法

現金の動き、どう感じる? 「現金として出入りしやすい順」に並んでいるという視点を知ることができたのは、大きな発見でした。現金の出入りがしやすい(1年以内)ものを「流動」、出入りがしにくい(1年以上)ものを「固定」と考えるのも、個人的には非常に共感できるポイントでした。 企業のB/Sはどう? 事例として紹介されていた具体的な企業名を挙げることは避けますが、固定資産の多い企業において、事業の特徴がその企業のB/Sから読み取れるのは興味深かったです。特に、鉄道会社や不動産会社の固定資産が大きな割合を占めることを考えると、他の同業他社と比較してみたくなります。 流動計上、納得できる? また、買掛金など営業サイクルに含まれる資産・負債を流動とする考え方も、1年以内に現金として出入りするものとして理解しやすく納得しました。 B/S活用場面は? ①B/Sを現実の場面で活用するイメージがまだ明確にできずにいます。例えば、M&Aのニュースがあった際、買われる企業のB/Sを見て、純資産とのれんの程度を確認し、その買収額が妥当かどうかを掴むのに使えるかもしれません。 買収の価値は? ②また、買収先を検討する際、その企業の価値やシナジーを考える上で、妥当な買収額をイメージするための参考にしたいです。 業界分析、進む? 11月中に、人材業界の競合他社のB/Sを5社確認し、各社の資産・負債における流動・固定、純資産の割合の違いを比較してみる予定です。さらに、建設業界とエネルギー業界についても、それぞれ5社の特徴を調べてみようと思います。仮説としては、人材業界は、特定の企業と純資産の割合が近いとされ、建設・エネルギー業界は、特定の企業と固定資産の割合が似ていると考えています。

アカウンティング入門

PL×BSが紡ぐ経営の真実

BSとPLの連動をどう捉える? BSとPLがどのように連動しているのか、改めて理解することができました。具体的には、PLの当期純利益がBS上の純資産(内部留保や利益剰余金)に反映され、株主から見ると「その会社に預けたお金が1年間で増えたのか減ったのか」という結果となる点が新鮮でした。 BS各部のバランスは? また、BSの見方については、まず流動資産、固定資産、流動負債、固定負債、純資産という5つのパーツを比較し、全体のバランスを把握することが基本であると学びました。左側では資金をどのように有効活用しているか(何に使い、何が増えているか)を、右側では倒産リスク(借入額の多さ、支払い能力、負債が純資産に対してどうなのか)を確認するという考え方が非常に論理的でした。具体的には、流動資産と流動負債の大小関係や、流動資産と固定資産のバランス、さらには純資産に占める固定資産の割合がそれぞれの企業の安全性を示す指標となるという点が特に印象に残りました。 減価償却の仕組みは? さらに、減価償却についても、購入時にはPLに反映せずBSに資産として計上し、その後は毎年「減価償却費」としてPLに計上される仕組みになっていることが理解でき、実務でも確実に役立ちそうだと感じました。 決算書活用のヒントは? 最後に、実際の経営相談の現場では、公開されている企業の決算書を自主練習の材料として活用することで、PLとBSから読み取れる情報や提案の幅を広げる手段として有効に働くと実感しました。BSの各パーツを比較して、ある条件ならこういった指標になる、といった具体的な分析方法をさらに学びたいという思いが強まり、分かりやすい解説書などがあればぜひ参考にしたいと感じています。

アカウンティング入門

運動成績に学ぶPLの極意

大局をつかむには? 損益計算書(PL)の読み方について学び、細かい項目に注目するよりは、大局をつかむことが大切だと理解しました。具体的には、売上や利益の動向に注目して読み解く方法がポイントです。特に、以下の3点に注意することが推奨されました。 売上高はどう見る? まず、売上高では、過去からの推移に目を向けることが重要です。次に、5つの利益においては、売上高に対する比率やその推移、各利益間の差に着目する必要があります。さらに、比較対象として、過去実績や業界平均、自社の目標値などを常に念頭に置くと、より実態に即した分析ができることを学びました。 価値はどこに? また、損益計算書を「運動成績表」に例える表現には、非常に分かりやすく感銘を受けました。儲けを大きくするためには、どのような価値が付加されているか、また儲けの源泉が何であるかを明確に把握することが鍵であると感じました。これからは、価値を意識しながら損益計算書を読むことを習慣化していきたいと思います。 実践はどう進む? さらに、Week2で学んだ内容を実践するために、自社の損益計算書を実際に読み、自社の経営目標の達成度を確認してみるつもりです。その結果をもとに、同業他社との比較から、自社が直面している課題や社会情勢、内部目標設定の問題点、また競合の動向などを分析していく考えです。 日常ではどう対応? 一方で、日常業務においてなかなかPLに触れる機会が少ないため、理解を深めるのが難しいと感じています。同じような課題をお持ちの方がいらっしゃる場合、どのような方法で日々の業務に学びを活かし、知識の定着を図っているのか、ぜひ教えていただけると幸いです。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

アカウンティング入門

B/Sで企業の未来を読み解く方法

B/Sって何を示す? B/S(貸借対照表)は、企業のお金に関する調達方法とその使い方を示す重要な資料です。このB/Sを詳しく見ることで、企業の事業コンセプトまで読み解くことが可能です。資産と負債は、それぞれ流動的なものと固定的なものに分類することができ、それらの割合から、どのような事業形態を取っているのかを推測することができます。 負債と純資はどう違う? また、負債と純資産の関連性も重要なポイントです。特に、純資産の割合が大きいことは、企業の安定性を示す一つの指標となります。しかし、市場が成熟していたり、市場ニーズが一定に続く事業であれば、負債が多くても返済の見込みがあるという解釈も可能です。このように、市場の安定性とその中での企業の立ち位置によって、企業の安定性についても考察を進めることができるのです。 利益はどこから来る? さらに、B/Sを通じて、事業モデルが固定資産や流動資産によって利益を生み出すものであるのかといった推測も可能です。事業を検討する際には、お金の調達方法や使い方、資産の持ち方、そして負債と純資産のバランスに関して熟考することが求められます。事業立ち上げ時にB/Sの構造を確認することで、どの部分で商機を見出すビジネスモデルなのかも明確にすることができます。 どこにリスクが? 加えて、グループ企業内の(親)商社と(子)メーカーのB/S構造を比較してみると、有名企業のV字回復や、事業再建、事業売却などについても、どの構造部分に要因があるのか、さらにどこがリスクになるのかを分析することができます。純資産の割合についても、その企業や投資家、株主にとって望ましい形になっているのかという観点で考慮すべきです。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

マーケティング入門

エンタメとマーケで見る心の動き

自己紹介で何を感じた? 「自己紹介」のエクササイズで、相手の自己紹介を聞いた際に自分の気持ちを意識するように指示されたことが印象に残っています。確かにこれは、商品やサービスを提供された際に顧客がどう受け止めるかという心の動きと全く同じです。個々のニーズにもよるでしょうが、私は経歴などの客観的なデータよりも、相手の話し方や温度感、表情に引き込まれる傾向があります。一方で、自分では自己紹介を比較的上手くできたと感じていましたが、実は何の根拠もなくそう思っていたことに気付き、フィードバックが重要であることを悟りました。相手がどのように受け止めたのかを把握することは、マーケティングの基本かもしれません。 コンテンツ反応を読み解く? 自分の仕事に当てはめて考えると、提供したエンタメコンテンツがどのように受け止められているのか、その視聴時間数や視聴態度としてのフィードバックを読み解く視点が重要だと感じました。視点によって、浮き彫りになるフィードバックもあれば、埋もれてしまうものもあるでしょう。何を基準に解釈するかは感性も関わるので、感性の磨き方も学びたいと思います。 データで戦略を立てる? 新しい職種へのチャレンジとして、まずはデータの全体像を把握することが必要です。調査方法や測定手法、マトリックスを理解し、何を成功とするのか、その基準を把握することに加え、なぜそれが成功とされるのかを考えます。また、過去の事例において、仮説と結果の差分はどの程度だったのかを知り、戦略を立てる際にどのようにデータを活用するのかを学びます。データがサポートしない新しいことにチャレンジする際は、どのように戦略を立てるのかを考えることが必要です。

アカウンティング入門

伝統×WEB!決算数字で読み解く現実

会社の収益は見えるの? 会社のビジネス内容から、損益計算書や貸借対照表の数値を予測することが可能です。予測と実際の数字との差異を知ることで、その会社のビジネスの特徴、すなわちメリットやデメリットを理解する手がかりになります。 航空事例は何を示す? 今回のケースでは、ある航空会社が固定資産として旅客機を購入する際、何年で償却するかや、稼働率、メンテナンス費用など、どの項目を検討してどの程度の収益が見込まれているのかに興味を持ちました。自分が働くモノづくりの現場でも同様の視点が当てはまると感じています。また、近年増加しているWeb関連企業とはビジネス体質が異なるため、収益に対する考え方も違うと考えます。この点について、グループワークの中で議論してみたいと思います。 自社分析はどう進む? ① 自社のP/LやB/Sシートを確認し、自分なりに分析します。同業他社との比較も行い、どの部分が異なるのか、なぜ違うのかについて考察します。さらに、伝統的な企業と近年の企業の違いを比べ、その知見を自分の業務に活かす方法を模索します。 意見交換で何が得られる? ② 半期や通期の決算書を確認し、自分なりの見解をまとめた上で、グループのメンバーと意見交換を行います。新聞やニュースなどの情報に触れた際、その内容をWebで検索し深掘りすることで、更なる理解を深めます。 他社との違いは? 自社の半期・通期決算発表を受け、会社の現状を自分なりに考えるとともに、他社の情報にも関心を持ち、なぜ他社が強いのか、または厳しい状況にあるのかを考察することが重要です。関連する書籍にも手を伸ばしてみると、より広い視野でビジネスの理解が深まるでしょう。

戦略思考入門

フレームワークで拓く新たな視点

背景はどう思う? 意見の背景にある事情を踏まえて考察することで、市場環境の変化、顧客要望、自社の課題など、3Cの骨格がより明確に見えてきました。これまで漠然と感じていたフレームワークが、意識して活用することで分析の解像度を高めることができたと感じています。 分析方法は何? 広い状況把握には、PEST、3C、SWOT、バリューチェーンといったフレームワークが非常に有効です。得意先の現状分析にはPESTを用い、相手が置かれている環境や抱える課題を正確に読み解くことが可能となります。また、自社は3Cを活用して市場環境や取引先のニーズ、競合との比較を行い、強みと弱みを把握してより的確な提案に繋げていく意向です。さらに、SWOT分析を通じて、表面的な強みに留まっていた自社の良さを改めて具体的に捉えることができるようになりました。 連携はどう取る? バリューチェーンについては、今回初めて学びました。これまで、所属部署内での状況把握に注力していたため、他部署との連携や大規模なプロジェクトに取り組む際には、バリューチェーンを活用して内部状況を正確に把握し、できることとできないことの判断、リソースの効率的活用、そして納期の正確な実現を目指したいと考えています。 活用はどう進む? 今後は、フレームワークを確実に記憶に定着させ、業務のあらゆる場面で即座に活用できる体制を整えようと思います。具体的には、学んだ内容を記載したメモを毎朝のリマインダーに設定し、日々使用するアプリにもフレームワークの内容を記録します。さらに、業務で利用する際にはチームメンバーと共有して共に考える時間を設け、実践での活用を深めていきたいと感じています。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

「比較 × 読み」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right