データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

戦略思考入門

生産性向上のための取捨選択の極意

事実と推計の評価は? 取捨選択を考える際は、多角的に評価することが重要であり、それに対する重みづけも大切です。評価を行う際には、実際の事実を集めることが最も効果的ですが、信頼できる推計を利用することも有効な手段です。経験を積むことで、適切な生産性の判断ができるようになりたいと考えています。また、定量的な視点に限定されず、経緯など定性的な視点からの補足も有効です。捨てるためには、事前の準備が重要であると感じました。最終的には「判断」であり、学びをいかに使いこなすかは自分次第です。 不要業務の見極めは? 我々の組織においては、「やらなくていいこと」はあまり多くないと気付かされました。つまり、IT部門が行わず他部署や社外に引き渡すことが「やらなくていいこと」に該当すると考えられます。突発案件も含め、必要に応じて業務を放棄するという選択肢を用いて、現場の負荷を一定範囲内でコントロールしたいと思います。 優先順位はどう決める? 業務の優先順位を評価するために、いくつかの基準を定めることが必要です。まず、現状の業務を重要性、領域、役割などで大まかに層別します。そして、層別したグループごとに評価し、優先順位をつけます。この際、優先度の低いグループについては、廃止やアウトソース、他部署への引き渡しといった方針を立てておくことも考えに入れます。

戦略思考入門

優先順位に革命!社内広報の秘訣

どう優先順位を決める? 優先順位の付け方について、日頃から意識はしているものの、実行には至っていないと実感しました。その原因は、感覚的な対応に頼っていたことだと思います。具体的な数値を用いて、定量的に判断できる場合には数値で明確化し、そうでない場合でも様々な観点からどこに注力すべきかを書き出して判断しようと考えました。 社内広報の効果は? 特に社内広報の実施において、この考え方が役立つと感じています。全ての要望を受け入れるのではなく、自部門の目標に沿っているかを大前提として考え、その情報を求める社員がどのくらいいるのか、公開することでどのような価値が生まれるのかを明確にしながら実施を検討したいと思っています。一方で、メンバーに自発的に取り組ませる仕事を提供することも重要です。受け取る社員の価値と自部門のメンバーの成長を考慮して、実施の判断を行いたいと考えています。 実施基準はどう決める? 社外だけではなく社内広報に関しても、実施判断のための基準を設けたいと思っています。現在は実施を前提とした記事テンプレートを用意していますが、実際に実施するかどうかの判断は明確にされておらず、都度非論理的に判断してしまっています。実施基準を明確にすることで、メンバーも「なぜこの仕事を捨てるのか」を感情論ではなく理解できるようになると思います。

クリティカルシンキング入門

問いを立てて見える世界が変わる!

問いはどう見つける? 動画学習を通じて学んだことは、まず課題に対して「問い」を立てることの重要性です。自分自身に問いを投げかけ、それを残し、共有することが求められます。問いを立てていないということは、何も考えていない状況と同じだと気づきました。問いを立てることで、本当に考えていることが明らかになるのです。 分解で何が明らか? 実践演習では、物事を分解することで普段は見えないまたは分かりにくい部分が明らかになり、結果として判断が容易になることを学びました。この分解のプロセスは、考える力を高めるために非常に効果的です。 どこに問題が? 特に印象に残っているのは、明らかに問題がある資料において、具体的にどこが問題なのかを文章で説明する難しさです。また、職場でのテーマがずれることを防ぐためにも「問い」を残し、周囲と共有することが役立つと感じました。 数字は何を示す? 営業職などの数字が厳しい環境においても、その数字がなぜそうなったのかを振り返る機会が少ない現状を打破し、ここで学んだ論理的思考を活かすことが重要だと考えます。まず「問い」から始め、業務で悩んだときには問いをしっかり立て、何も考えていない状態を避ける。もう一人の自分に問いかける行動を取り、課題を分けて考える癖をつけることが、業務改善に繋がるのではないかと思います。

リーダーシップ・キャリアビジョン入門

問いかけで深まる目標設定の極意

聞く意義は何だろう? 「問いかけて、聞く」ことの重要性を実感しました。つい自分の考えや意見を述べがちですが、そこは抑えて、相手の話を聞くことに専念したいと思います。問いかけ自体はあまり得意ではないのですが、理解を深めるために意識して取り組んでいこうと考えています。「コンフォートゾーン」、「ストレッチゾーン」、そして「パニックゾーン」の識別は難しいですが、これを目標設定時の判断基準として活用したいです。 目標設定の意味は何? 近々の目標設定にも取り入れる予定です。年上ではあるものの、業界経験が浅い担当メンバーがいて、その方の目標を、本人が納得できる形で設定したいと思っています。なぜその目標を設定するのか、その意義をしっかりと理解したうえで、少し挑戦的な目標を立て、やりがいのあるものにできればと思います。 意思確認はどうする? 設定した目標と行動に「本人の意思」が反映されているかを確認する必要があります。組織や上長の意向にばかり沿いがちな点を、本人らしさと目標のバランスを取りながら見直していきたいです。また、なぜその目標を設定するのか、その意義をしっかりと理解してもらうために、達成後の姿をイメージさせる会話を盛り込むことも大切です。さらに、ストレッチゾーンを把握し、少し厳しいけれども達成可能な目標を見つけるようにしたいです。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

戦略思考入門

異なる視点が生む成長の物語

個性の違いを感じる? 同じ職場で同じ業務に携わっていても、個々の考え方や向いている方向が異なることを学びました。異なる見解を否定するのではなく、別の視点を取り入れることでチーム全体の視野が広がり、より質の高いアウトプットが期待できると実感しています。 分析で全体を見直す? また、各種フレームワークを用いた分析を通して、事業全体や自分自身の業務を大局的に見直すことができると感じました。定期的にこれらの手法を実践することで、プロジェクト全体や自身の状況を整理し、効果的な改善・提案に結びつけたいと考えています。 共有で理解深める? さらに、普段当たり前と捉えている業務の内容も、言語化や図表化して共有することにより、チーム全体の目的意識を維持する手段になると確信しています。施策を提案する際には、フレームワークを活用して背景・根拠・想定される効果を明確にし、ストーリー性を持たせた説得力のあるアプローチを心がけたいと思います。 説得力の根拠は? チームメンバーとのコミュニケーションにおいては、分析結果を交えることで自身の主張に説得力が増すと感じています。業務推進においては、感覚だけに頼らず、3C分析やSWOT分析などを参考にしながら、合理的な判断とその決断が全体に与える影響を考慮することを意識していきたいと考えています。

データ・アナリティクス入門

問題解決力を磨く3つのステップ

問題の原因をどう理解する? 問題の原因を探る際には、単純に数字に飛びつくのではなく、割合などを他の数字と条件を合わせ、その数字の本質を理解し、原因を考える必要があると学びました。 仮説の選択基準は何? また、複数の仮説のうちどれを選択すべきか簡単に判断できない場合には、判断基準を設定し、仮説ごとに評価し点数を付ける手法を学びました。その際、判断基準項目の影響度に応じて重み付けを行う必要もあることを理解しました。 新システムの導入検討はどう行う? 新しいシステムや運用の導入検討を行う際には、メリット・デメリットごとに判断基準を設け、現行と比較することで、周囲に納得感を持ってもらえる説明ができると思います。また、収支検証では、単純に数字に飛びついて結論を出すのではなく、委託されている人数や内容、イレギュラー案件の有無など、できる限り事情を細かく理解し、条件を揃えた上で検証を進めるよう意識します。 日常的な思考の癖付けの重要性 日常的に「この物事の切り口は何だろう?」と意識することで、必要なときに的確な判断基準をすぐに想定できるようになりたいと思います。そのため、日頃から思考の癖付けを行うことが重要です。また、数字を扱う際には、数字同士の条件が合っているかどうかや、数字ごとの持つ重みを意識するようにします。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

データ・アナリティクス入門

実践力が輝く!学びの現場改革

3Cの分析方法は? 3Cは、事業環境を多面的に捉えるためのフレームワークです。Customer(市場・顧客)、Competitor(競合)、Company(自社)の3つの視点から状況を分析し、事業戦略を立案する際の参考にします。 4Pで何を判断? 一方、4Pは3Cの自社部分をより詳細に検討するためのツールとなります。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)の4つの要素を軸に、どのようにサービスの良さを顧客に訴求するかを分析するために活用されます。 現場の課題は? 観光客にとっては、免税手続きの所要時間が短い中で対面式のアンケートや、時間を要するインタビューは取り組みにくい方法と言えるでしょう。また、クレームが発生した際には、最低でも1名の通訳が苦情対応のため常駐しなければならず、現場では実質的に人員が減る状況となります。 改善策はどうする? これまでのアンケート調査は一度のみ実施しており、対面で紙に選択肢を記入していただく方法にはお客様に抵抗があると感じました。今後はデジタル形式で「後ほど実施していただいても構いません」と伝え、アンケートに協力していただいた方々には次回利用可能なショッピングクーポンを提供することで、対応の改善を図ろうと考えています。

「判断」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right