クリティカルシンキング入門

問いから始める学びの深さ: ナノ単科の経験談

問いの重要性とは? 進めるべき物事に対して、まずは問いを考えることが重要です。問いが見つかったら、それを常に自分の中心に置き、それがぶれないように考え続ける大切さを学びました。 どんな気づきがあったか? 01-04の総合演習では、これまで学んできたことを実戦形式で試すことで、各週での学び以上に多くの気づきや発見がありました。 資料作成での工夫は? 資料作成においては、視覚的に見やすい構成や文章、図、フォント、装飾を施すことで、相手をより納得させやすい資料が作成できると感じました。 効果的なコミュニケーション方法は? 多くの会話の場面—ミーティング、報・連・相、雑談などでイシューを特定し、相手の伝えたいことと自分の伝えたいことを整理しながらコミュニケーションすることで、良好な人間関係を築くことができると感じました。 どうやって伝えたいことを明確にする? メール、手紙、SNSなど、文章を作成する際には、伝えたいことを明確にし、論理構造を考えながら書くことで、スムーズなテキストコミュニケーションができると思いました。 成長に繋がる実戦経験とは? 資料作成、会話、文章作成など、仕事やプライベートの実戦経験を積むことで、自己成長につなげることができると感じました。

データ・アナリティクス入門

現状ギャップに挑む実践の秘訣

実践が難しいのはなぜ? 問題解決の手法として、あるべき姿と現状とのギャップを把握する大切さは理解していましたが、実際の業務で試みるとなかなか実践に移せないと感じました。また、ロジックツリーを活用する際、感度の良い切り口を見つけることの重要性を認識しつつも、その実現には難しさを感じています。 MECEに頼ってみる? 一方で、「MECEはほどほどに」という考え方が気持ちを楽にしてくれた部分もあり、今後は積極的に取り入れていきたいと思っています。同時に、ロジックツリー以外の方法についても学びを深めたいと感じました。 目的明確は必須? 先週までの学びでは、分析のためにはまず目的を明確にすることが不可欠であると再認識しました。その目的の明確化と、あるべき姿と現状とのギャップを検討することは、非常に密接に繋がっていると実感しています。今後の業務においては、販売実績の単なる加工に留まらず、「売り上げを伸ばすため、現状と目標値の大きな乖離が生じる要因を、MECEを意識して分析する」というアプローチを試みたいと考えています。 どの枠組みが有効? さらに、MECEを意識した分析を進めるにあたり、どのようなフレームワークが有用なのか、意見交換を通じて深めていければと思います。

データ・アナリティクス入門

数字に魅せられる!学びの実験室

数値とビジュアルの関係は? データ比較の際、数字に注目し、その数値をビジュアル化することで、数式に基づく関係性を把握することの重要性を学びました。大量データの分析では、目的を明確にした上で仮説を立て、データ収集を経てその検証を行うプロセスが大切であると感じました。また、分析する際には、単純平均だけでなく加重平均や中央値、さらには散らばりを示す標準偏差といった代表値を活用することで、より深い理解が得られると実感しました。 散らばりの意味は? 特に、データの散らばりに注目することで、数値の乖離をどのように防ぐかという点が印象に残りました。数値の集約や分布の理解は、分析の精度向上に大きく寄与すると考えています。 売上推移の分析は? 実績報告書の作成においては、単月売上や累計売上の推移を把握するため、商品別や販売先別の分析が有効であると思います。各取引先に対する実績や、特定商品の業績分析を行う際には、加重平均や中央値を用いて売上の平均成長率を求め、業績の変動理由について目的に沿った仮説を立て、データ収集と検証をする手法が有用だと感じました。 分布の理解は? また、正規分布の説明では、標準偏差に関する具体例の一部が分かりにくかったため、さらなる理解を深める必要があると感じました。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

データ・アナリティクス入門

目的を定め柔軟に切り拓く

なぜ仮説が必要なの? 分析においては、単にデータを整理して新しい気づきを提供するだけではなく、自分自身で仮説を立て、その仮説に基づいてどのような分析を行いたいか、また必要なデータは何かを考えることが重要だと学びました。以前は無意識に必要なデータを集めていたこともありましたが、目的を明確にすると分析のアプローチが大きく変わると感じます。同時に、立てた仮説に囚われることなく、他の可能性も公平に検討するスキルを身に付ける必要があると認識しました。 市場と売上の本質は? また、毎日の売上実績の確認は、単純に前年との比較やKPIの向上を狙うだけでなく、競合他社のマーケット動向や顧客へのアプローチについても視野を広げることが求められます。一社だけではなく、3Cの観点から広く分析することで、データが十分でなくても次の一手を打つための新たな視点が得られると考えています。 データ活用の秘訣は? 日々の実績やKPIのチェックに加えて、整理したデータをどう活用するか、チャレンジ精神を促す分析やその見せ方を意識することが必要です。競合の市場シェアデータなどを随時入手し、自分の活動が先月や過去と比べてどのように変化しているのかを具体的に確認できると、より実践的な行動変化にもつながると期待しています。

データ・アナリティクス入門

MECEで分析の精度と効率をUP!

MECEの重要性を再認識 MECE(Mutually Exclusive, Collectively Exhaustive)という概念を知ってはいたものの、長い間実務で意識して使ってこなかった。そのため、What, Where, Why, Howをしっかりと整理しながら進めないと、方向性を見誤る原因となり、結果として漏れが多い分析で無駄に時間を消費することになってしまう。 実務でのMECE活用法 こうしたミスを防ぐには、実務を進める際に常にMECEを頭に浮かべるトレーニングが必要だ。特に仮説を立てる場面が多く、成果が出ない原因になりがちである。特に営業戦略を立てる際には、一般消費者向けのプロモーション内容が的外れになる可能性があるため、プロセスの重要性が極めて高い。 書き出しで得られる効果は? 動画でも言及されていたように、文字として落とし、ビジュアル化することは重要だ。書き出すことで漏れや重複を回避し、整理が進むはずだ。ロジックツリーは何年も使ったことがないが、時間の問題にもなるものの、逆に簡潔化され、スピードが上がるプロセスになるかを試してみたいと思う。また、その過程で「目的は何か」を見失わないようにし、表面的かつ形式的にならない工夫を取り入れたいと考えている。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

データ・アナリティクス入門

全体把握で見える次の一手

目的の明確性は? 分析を進める上で大切な点は、まず目的を明確にし、全体像を把握することです。その後、大項目から中項目、小項目へと細分化しながら、漏れや重複がないよう注意深く分解します。また、問題点を捉える際には、現状が正常な状態に達していない場合と、正常な状態であってもあるべき姿とのギャップが存在する場合という違いに着目することが重要だと学びました。 債権回収の現場は? 債権回収の現場では、入金約束が取れたグループとそうでないグループに分け、ロジックツリーを用いて分類を実施しました。性別、年代、連絡先の有無などを集計し、各要素の違いを比較検証した結果、入金約束を取れたグループでは特定の時間帯、特に朝8時台に件数が多い傾向が見られました。この事実を踏まえ、これまで連絡が不足していた可能性について仮説を立て、今後のヒアリングで更に検証していく予定です。 データ分類の進め方は? データ入手の段階では、まず全体像を把握し、その上で影響が大きい部分を特定するために丁寧に分類を進めました。さらに、複数の仮説を構築してから集計を細分化し、一つずつ検証するプロセスが重要であると感じました。昨年との比較を行うことで、変化や傾向を明確にしながら、次の対策に活かしていきます。

データ・アナリティクス入門

仮説思考で未来を切り拓く

思考はどう深まる? 毎回、自分の思考が浅く、もっと広い視野を持つ必要性を痛感しています。かつて学んだ3Cや4Pのフレームワークは、今回は思うように活用できませんでしたが、仮説思考はデータ分析に限らず、経営戦略やマーケティングなど、様々な分野で常に求められる大切なスキルだと感じています。 偏りをどう避ける? また、データ分析において外部データを活用する際は、あらかじめ結論を決めて自分に都合の良いデータだけに偏らないよう、常に注意する必要があります。複数の仮説を立て、網羅的な視点を持つことが求められる一方で、これまでの自分の取り組みには網羅性が不足していたのではないかと感じています。今後、販売戦略や方針策定の際には、網羅性やデータの客観性・妥当性、すなわち根拠の質を向上させることで、提案の説得力を高めていきたいと思います。 結果の根拠は? データ分析にあたっては、まず仮説の網羅性を重視し、文字や図表などを用いて過不足を冷静に判断できるよう努めます。こうした仮説思考は問題解決の場面で非常に有用であり、社内でのディスカッションにも積極的に活かしていきたいと考えています。また、データ分析結果をアウトプットする際は、その目的や使用したデータの根拠を明確に示すことを心がけます。

データ・アナリティクス入門

ひたむき仮説で未来を創る

仮説設定の意義は? 講座を受講して、データ分析のテクニックを学ぶことができました。しかし、分析そのものはAIに任せることが可能であり、本当に人間に必要とされるのは、データ分析の目的を明確にし、適切な仮説を設定する能力だと実感しました。正解に飛びついてしまいがちな思考停止の傾向を反省し、より良い仮説を見出すために、あきらめずトライ&エラーを重ねていきたいと考えています。また、当たり前を疑う力や、本質的な課題を見極める力、さらには分類のスキルを養うことの重要性も感じました。これらは次週以降や実践の場で活用していきたいと思います。 内部監査の視点はどう? 私は内部監査を担当しており、より鋭く価値ある提案ができるよう、今後はさらに良い仮説を立てる努力を重ねるつもりです。自分の考えや視点の狭さに日々反省しながら、「この事実から何が言えるのか」という問いに徹底して向き合っています。 現場改善はどうする? また、狭い視点に陥らないために、マネジメント視点やクリティカルシンキングを意識するとともに、現場の状況を十分に踏まえた提案ができるよう努めています。具体的には、何が問題なのか、どうすれば現場が改善されるのかをデータを裏付けに、しっかりと整理して提案していきたいと考えています。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

戦略思考入門

フレームワークで広がる戦略的思考の世界

分析選ぶコツは? 戦略的な目標や方針を考える際、立場によって意見が異なることはよくあります。この経験を通じて、フレームワークを用いることの重要性を学びました。具体的には、3C分析やSWOT分析、バリューチェーン分析などのフレームワークを、目的に応じて使い分ける必要性を感じました。 目標設定の工夫は? 業務の目標を立てる際には、通期・上期・下期ごとにフレームワークを活用して目標を設定することが有効です。また、ミーティングやプレゼンの資料を作成する際は、その内容を精査し、適切なフレームワークを用いて資料を作成することが求められます。 広い視野の必要は? さらに、経営者の視座で考える必要性を強く感じています。自分の担当する部署の考えだけにとらわれず、より広い視野で物事を見ることが大切です。そして、ジレンマを過度に恐れず、失敗を恐れない姿勢を持つことも重要です。失敗した際のリカバリー方法をいくつか準備しておくことが助けになります。 他者意見の受け止めは? 他人の意見をしっかりと聞く姿勢も不可欠です。他の人の考えを尊重し、共感する広い心を持つことで、さまざまな視点から判断が可能になります。これに加えて、聞きやすく、話しやすい職場づくりを心掛けていきたいと思います。

「分析 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right