クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

集合知で描くSWOT活用の新視点

フレームワーク活用の理由は? フレームワークを知っているだけでは意味がありません。特にスタッフ部門では、直接的に活用できる場面は限られているように感じていました。しかし、具体的な活用ポイントや事例を学ぶことで、SWOT分析やその他のフレームワークも、読み替えや置き換えによって適用できる場面があるのではないかと考えるようになりました。 集合知はどう作用する? また、集合知の重要性も深く心に残りました。意見が食い違う場面は日常的にありますが、それを単なる困難と捉えるのではなく、多面的な認識が得られ、議論を通して考えが洗練され、抜け漏れの防止にもつながるというポジティブな側面に着目し、有難く享受していきたいです。 体制強化の再評価は? これから取り組みたいのは、現在の体制強化の進め方についてのSWOT分析を通じた再評価です。漠然と正社員を補充するだけでなく、効率と効果の両面で新たな気づきが得られるのではないかと期待しています。また、個々がプロとして働くことから、プロ集団として組織全体で取り組むというマインドチェンジも重要です。現状ではすべてをみんなでやろうとするのは難しいかもしれませんが、メンバーの負担を軽減し、集合知の重要性を訴えながら適切な雰囲気を作ることが必要だと考えています。これは長期的な課題かもしれませんが、戦略的に最短で進めることを目指します。 SWOT分析はどう機能? まずは自組織のSWOT分析を実施し、その結果を基に体制強化策の見直しを行いたいと思います。集合知を活かす組織づくりに向けては、この研修での学びや気づきを月次会議で共有することから始めたいです。また、私自身が「一緒に仕事をしたい」と思われるような人間性と振る舞いを心掛け、日々、明るく元気に取り組むことを意識していきたいです。

戦略思考入門

思考の深さが生む経営革新

今回変更する振り返り文章 本質は本当に大切? 本質やメカニズムの重要性を理解するための課題に取り組みました。単に耳にした言葉を引用するだけでは、相手を説得することは難しいと感じました。今回の取り組みでは、規模の経済性を活かすためには、「生産量を増やす」や「原材料の発注量を増やす」といった基本的な提案だけでなく、深く考える必要があると学びました。この経験を通じて、多角的な思考の重要性を改めて実感しました。 考え抜く意識は十分? 過去の学習から、「考えて考え抜くこと」が最も重要であると理解しました。規模の経済性については、コスト低減を考える際、一部のコストだけを抑えるのではなく、トータルコストの低減を目指す必要があります。例として、コスト単価を下げて発注量を増やすと、保管料が増える可能性があります。全体としてコストが抑えられているかを確認するため、まず全体のコストを把握し、細分化して分析することが重要です。そして、どこのコストが下がれば他のコストが上がる可能性があるか、全体を俯瞰する視点が必要です。 コストは細分化できてる? 規模の経済性を考えるうえでは、コスト全体を把握し、できる限り細分化します(事業別、商品別などの軸での細分化)。次に、考えられるコスト低減策を洗い出し、全体を俯瞰して総合的に判断することが大切です。この際、変動費・固定費も意識して細分化を行います。 習熟度は十分? 習熟度効果については、まず業務内容にかかる時間を洗い出します。時間がかかる業務に対しては、マンパワー不足なのか、習熟度不足なのかを検討します。マンパワー不足の場合は生産性の向上を目指した人員配置を考え、習熟度が不足している場合は、慣れや経験を積む時間が必要です。さらに、教育不足であれば育成も視野に入れることが求められます。

データ・アナリティクス入門

仮説が織りなす成長のヒント

仮説って何だろう? ビジネス現場における仮説とは、ある論点に対する仮の答えのことです。仮説は「結論の仮説」と「問題解決の仮説」に大別され、時間軸(過去、現在、未来)によりその内容が変化します。問題解決の仮説は課題に取り組む際の原因究明に用いられ、一方、結論の仮説は新規事業などに対する仮の答えとして位置づけられます。 プロセスの流れは? 問題解決のプロセスは4つのステップで整理できます。まず、Whatで問題が何であり、どの程度の問題かを把握します。次にWhereで問題の所在を明らかにし、Whyで問題が発生している原因を追究します。最後にHowでどのような対策が有効かを検討します。複数の仮説を同時に立て、各々の仮説が網羅性を持つよう確認することで、行動のスピードや精度の向上が期待できます。 仮説の活用法は? 私自身はこれまで、Webサイトの行動履歴や売上、KPIなどのデータ分析において、一つの仮説に頼る傾向がありました。今後は最低3つ以上の仮説を立て、上記の4ステップ(What、Where、Why、How)に沿って分析を深め、効率的な問題解決を目指していきたいと考えています。原因追及だけでなく、具体的な対策案を提案できる分析力の向上が目標です。 具体策は何だろう? そのため、以下の取り組みを徹底していきます。まず、仮説立案を強化し、複数の仮説を積極的に検討します。次に、問題解決の4ステップに沿って、各ステップの内容を明確に記録し、問題の全体像を把握します。また、データ分析に必要な技術や知識の学習を継続し、プログラムや統計学などの講座を受講することでスキルアップを図ります。最後に、チーム内でのコミュニケーションを強化し、情報共有や定期的なレビューを通して、原因追及から対策提案まで一貫したアプローチを実現します。

戦略思考入門

効率的な学びを加速する秘訣

やらないことを決める重要性とは? やらないことを決めることの重要性は、明確なゴールに向かって最短・最速で到達するために不可欠です。マイルストーンを設定し、それを追いかけていくことも大切です。 学び方をどう改善するか? 学び方のコツとして、まず自分の考えを言葉にする「言語化」があります。思考は感じたことを言葉にし、曖昧な状態で終わらせてはいけません。また、「教訓化」としてケースの登場人物や状況を客観的に分析し、普遍的な教訓を引き出し、自分の状況に引き寄せる「自分化」を通じて、課題や弱みに反映させることが求められます。 マイルストーン設計の意義 これらの思考を実践に移すためには、マイルストーンの設計も意識することが重要です。やらないことを決めることで、やるべきことに集中し、スピードアップにつなげる戦略を立てることができます。具体的には、対象とする分野を絞り込み、効率的に活動を進めることが求められます。また、振り返りを通じて、合理的な努力を続けていくことも大切です。やらないことを毎週見直して戦略的に廃棄し、新たな求人に素早く切り替える姿勢が必要です。 ゴールに向けた具体的プロセスは? 戦略を練る上での課題は、より具体的な基準を持ち、ゴールに向かうためのプロセスや手法を明確にすることです。これからも、学んだことを具体的な課題に応用し、活動に活かす方法を考え続けてください。皆さんのさらなる成長を応援しています! 3月末までの行動計画 3月末までの行動計画では、重要な顧客接点の時間を増やし、スカウトよりも有望な求人を優先することで成功に近づきます。ただし、日頃手を出さないような求人にも少しは挑戦してみることが、新たな可能性を開くかもしれません。銘柄の入れ替えを定期的に行い、常に新鮮な視点を持ち続けましょう。

クリティカルシンキング入門

疑いが拓く学びの扉

本質をどう捉える? 本質的な課題を捉えるためには、まず目的を明確にすることが大切だと感じました。何のために、何を問うのか、その根底にある本質に迫ろうとする中で、当たり前と思い込んでいる事柄に疑いの視線を向けると、より本質に近づけるのではないかと思います。また、その問い方は単純な二者択一に終始せず、柔軟な姿勢を保つことが重要です。問いは一度限りではなく、何度も継続して行うべきで、その際、視点が偏らないよう多角的に分析し、具体的な実践を心がける必要があります。統計的なデータやその分析手法も、このプロセスにおいて有効なツールとなるでしょう。 本当の課題は何? 私はIT業界で働いており、この考え方は特に要件定義工程で役立つと感じています。本当にその機能が必要なのか、ユーザの真の課題は何か、また解決策がユーザ側の視点から見て適切かどうか、といった検証が必要な場面です。さらに、バグや障害対応においても、なぜ問題が発生したのか、どのタイミングで混入したのか、過去の事例と比較することで原因を追求する際に、このアプローチは有用です。開発プロセスの改善やリスク管理の分野でも、「今までのやり方が正しいのか」という疑念を持ち続け、常に振り返りながら改善を図る上で効果的だと考えます。 問いの立て方は? 「本質的な課題を捉える問いの立て方を身につける」ための行動計画としては、まずは疑いながら考える習慣をつけることから始めます。仮説を立て疑うことを日常に取り入れ、必要な理論や手法を書籍や研修を通して体系的に学びます。その後、実際の会議や小さなチームミーティングで本質的な問いを繰り返し投げかけ、意識を高めることを目指します。実践後は振り返りを行い、その結果を次回に活かすというサイクルを繰り返すことで、確実に身につけていけると考えています。

マーケティング入門

顧客ニーズを探る新視点の発見

顧客ニーズって何だろう? 「何を売るか」を考える際に、まず「顧客のニーズ」を念頭に置くことの重要性を学びました。顧客の「欲求」やそれを解決する手段、さらには顧客が自覚していないニーズについても思案し、提案できるよう努めることが大切です。また、自分が顧客の立場になったつもりで考えることも顧客理解に役立つ方法の一つだと学びました。 具体例はどう活かす? 学びを具体例で深めることができ、特にある事例が大変わかりやすかったです。具体的な例があることで、自社ではどう当てはめるかを想像でき、考えがさらに深まったと感じます。 ペインポイントの意味は? 中でも印象に残ったのは「ペインポイント」という言葉でした。これは「痛みや不快に感じていること」を指し、お金を出してでも解消したいと顧客が感じるポイントです。実はこの視点を私は見逃していたように思いました。 商品見直しの狙いは? 現在、自社製品の商品ラインナップの見直しを行っています。会議では以下の点について分析し、新しい提案をしようと計画していますが、課題もあります。 顧客ニーズの調査は? ①顧客ニーズの分析 ターゲット層が求めているものは何かを考えます。特にペインポイントを解消するという視点で、年代別の特徴を調査したいと考えています。しかし、アンケートを行う時間がないため、正確な情報を得るにはどこからデータを集めるかが課題です。 自社の強みを考える? ②自社の強み どのような点が自社の強みなのか、ブランドイメージを損なわず、原点に立ち返る商品を検討します。 社内データで検証する? 成功事例をもとに、社内データでカスタマージャーニーを調べ、情報を集約して部署内で共有したいと思います。そこから、顧客ニーズをさらに深掘りする相談をしてみます。

戦略思考入門

差別化に挑む私の学びの旅

ターゲットは明確? 差別化のためには、まずターゲットを明確にし、顧客や市場、競合、自社をしっかりと分析して、強みと弱みを整理することが重要です。強みや弱み、機会、脅威を浮き彫りにしつつ、実現可能性と継続可能性も考慮して施策を検討します。 独自のアイデアは? アイデアを考える際には、ありきたりな発想に飛びつかず、深く考えることが求められます。他業界からの発想を取り込むことで新しい視点が得られるかもしれません。また、集合知の活用は、アイデアの質を高める一助となり、自社の強みを意識しつつ、必要に応じて外部の力も借りることが重要です。ライバルにとらわれず、新しい差別化を追求します。 強みの活用はどう? 自社の強みを最大限に活用するには、VRIO分析が有効です。特に課題として感じるのはO(持続可能性)の部分です。経営資源を効果的に活用し、持続可能な組織化を図ることが求められます。この視点を自分の働き方に取り入れて、業務に反映したいと思います。 現状の整理はどう? 業務においては、現状を的確に把握して分析し、施策の実現可能性、継続可能性、模倣容易性、顧客ターゲットを明確に整理することが重要です。他のプロジェクトとの差別化を図るため、課題を整理し、重複しない施策を立案します。 業務効率はどうですか? また、バックオフィス業務の効率性を追求し、無駄を省いて既存の業務を見直します。業務が属人化しないように、統一したルールを設け、過去と未来の業務の違いを考慮しながら進めていきます。 自分の軸はある? 自分自身が社内でどのようなポジションで進むべきかについて、まずは自分の強みを理解し、VRIO分析を行います。自身の不足を補い、模倣のできない分野を伸ばして、自分独自の仕事の軸を持つことが重要です。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

戦略思考入門

経験則を超えたロジカル思考の重要性

経験は判断にどう影響? 人は、自分の経験に基づいて考える傾向があるように思います。具体例での3人のやり取りも印象的で、一見すると効率的で正当な意見に思えるものでさえ、直前に学んだことの影響を受けている可能性があると感じました。実際の仕事において、私自身もこうした意見を聞くとつい判断を許してしまうことがありますが、これを機に注意を払いたいと思いました。ビジネスにおいてロジカルな判断が求められる中、経験則だけで判断してしまうと冷静さを欠き、最適な戦略に到達できないことを再認識しました。フレームワークを活用し、事実に基づく分析と判断を行うことで、その状況に最も適した戦略を導き出すことができると改めて学びました。 感覚と分析、どっち? 広報の仕事に携わる中で、自社の強みを考えながら企画を行うことが日常的ですが、つい感覚的に仕事を進めてしまうことがあります。そのため、各企画の際にフレームワークを用いた分析が必要だと感じています。特に、社会的課題に対して自社の強みをどう活かすかという点は広報として最も重要視したいですが、業態的に難しい部分もあります。3C分析を通じて「何が難しいのか」「何をクリアすれば次のアクションにつなげられるか」が明確になり、チーム内や経営陣への説明責任を果たせると感じます。また、SWOT分析もすぐに活用できそうです。 市場分析できていますか? プレスリリース作成時には、市場背景や自社の強みの分析が特に有用だと感じています。テーマに取り組む前に3C分析を行い、関係者間で結果を共有・合意した状態で進めることで、考慮漏れや手戻りを避けられると思いました。市場や協業、自社のいずれかで欠けているテーマが出た場合には、担当部門に差し戻し、プレスリリースの実施可否の判断に利用できると考えます。

データ・アナリティクス入門

挑むデータ、拓く未来

データで信頼築ける? データが少ない状況では、医者の診断も検討はずれになりがちです。そのため、血液検査や各種データの収集、統計や原則に基づいた仮説の設定、そして一定期間の経過観察と検証を重ねることが求められます。こうした一連のプロセスは、日常生活の延長線上にある行為とも言え、直感に頼るのではなく、データを根拠とした理論的な意思決定に楽しさとやりがいを感じています。 どう伝えるのが良い? 日本の人口のごく一部がクリスチャンであり、その中でも特定の宗教団体に所属する会員はさらに限られています。残りの多くの人々に対して、回復された福音をどのように伝えるかという大きな課題に取り組んでいます。SNSやインターネット、テレビ、新聞、雑誌、口コミ、広告トラック、アドバルーンなど、さまざまなメディアを駆使し、目標達成の手法を模索中です。 伝わりにくいのは? もし、ひとりの会員が教会のことを知らない多数の人々に対して、漏れなく情報を伝えられたなら、その印象は全体に広がるでしょう。しかし、伝達だけではなく、クリック率やコンバージョン率といった指標を通じて、実際に人々の生活に喜びをもたらす変化を実現するまでには、段階的にその数が絞られていくのも事実です。それでも、たとえひとりのためであっても、自分のデータ分析が役に立つのなら、人生を賭ける覚悟で取り組むべきだと感じています。この講座と出会い、周囲から良い影響を受けられていることに感謝しています。 成果の極意は何? 毎週、成果を最大化するためのアイデアを考える時間を意識的に持ちたいと思います。インスピレーションが降りることを期待しながら、今週はABテストを実施してみようと考えています。データと真摯に向き合いながら、突破口を見つけ、進むべき道を探し続けたいです。

「分析 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right