データ・アナリティクス入門

数字が語る学びの秘密

データ比較の基本は? 他のデータと比較することが、意味を見出すうえで重要だと理解していましたが、件数が多いデータ同士の比較では、代表値を用いる必要があることや、データの分布状況を考慮する必要がある点まで深く意識したことはありませんでした。今回の学習で、データをビジュアル化して各々の特性を目で確認することで、仮説が立てやすくなる一連の流れが理解でき、非常に勉強になりました。 数値の習得方法は? ただ、加重平均や幾何平均、中央値、標準偏差といった細かな数値の算出については、繰り返し実践しながら学んでいかないと身につかないと感じました。そのため、何度も反復して練習する必要性を痛感しました。 資料作成にどう活かす? 今後、資料作成の際に付録データを掲載する場合は、今回学んだデータのビジュアル化を活かし、読み手に伝わるようなデータ表現を工夫してみたいと思います。また、データ分析の際には、どのような状況でどの代表値が適切かを踏まえ、代表値と散らばりを考慮して数字を集約していくことを意識したいと考えています。

アカウンティング入門

カフェから学ぶ経営戦略の秘密

カフェ事例から何が学べる? 身近なカフェを例に、ビジネスの本質を学ぶことができました。コンセプト(思い)に基づいた提供価値と、それに見合う対価の関係が数字にどのように反映されるかが、事例を通じて明快に理解できました。特に、高付加価値を追求する一方で、薄利多売の場合にPLのどの項目に差異が生じるか、その理由について具体的なイメージが湧きました。また、利益を出すための施策はコンセプトに基づいたものでなければ、ビジネス全体にリスクを生じさせるという点も印象的でした。 PL比較で何が見える? さらに、自社のPLを他社と比較する際、理念や戦略の違いが如何に数字に反映されるかを考察することが重要だと感じました。どの部分で利益が出ているかや、その大小を確認することで、自社のビジネスがコンセプトに沿って運営されているか、または改善すべき点がどこにあるかを掴むことができました。今後は、数値の推移や変化と施策との結びつきをさらに意識し、3か月先までの売上や費用の見通しといった具体的な活動にも取り組んでいきたいと思います。

データ・アナリティクス入門

数字に秘めた学びのヒント

数字選びはどうすべき? 代表値やばらつきを考慮し、適切な数字を選ぶ重要性について学びました。データには多様な側面があり、集計して表にまとめる際には、その背景となる意味を正しく理解する必要があります。 データの組み合わせは? また、他者のデータを確認する際も、各数字がどのような要素で構成されているかを意識することが大切だと感じました。たとえば、会議室の使用率や社員の出社率といった具体的な数値をデータベースでチェックし、分布図を用いて関連性を見出そうと試みた経験があります。こうすることで、新たな視点から情報を捉えることができました。 情報整理のコツは? さらに、過去の購買履歴をグラフ化するなど、複数のアプローチでデータに向き合うことで、細かい点まで確認し、本当に必要な情報を抽出するプロセスが重要だと再認識しました。まずは細かいデータを収集し、グラフ化やピボットテーブルを活用して全体像を把握し、さらにまとめられるデータは一つの図に統合することで、情報を整理しやすくすることが効果的だと感じています。

データ・アナリティクス入門

数値分析で掴む学びの一歩

数字の意味は? 数字だけが羅列されているデータは、そのままでは意味を把握しづらいと感じました。データを適切に加工することで、理解が深まると思います。 数値の分析法は? 数値の分析にあたっては、代表値や散らばりに注目する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、それぞれの状況に合わせた選択が求められると感じました。 年齢層の傾向は? また、コミュニティ内の受講生の年齢層を考える場合、単純平均だけでなく、中央値や散らばりも分析することで、どの層にアプローチすべきか、またはまだ十分に届いていない層に合わせたサービス展開を検討できると考えました。 情報収集はどう? 現状、年齢データを明確に把握する手段がないため、まずはアンケートの実施や入会時のデータ取得を通じて、年齢情報の収集が必要です。さらに、退会者数についても、単なる人数の推移のグラフではなく、どの時期に退会率が高いのかといった散らばりも視覚化することで、より具体的な分析が可能になると思います。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

クリティカルシンキング入門

グラフ活用で資料作成が劇的に変わる!

グラフ作成の要点は? グラフ化による情報の伝わりやすさの向上は非常に大きいと感じています。どのような種類のグラフであっても、適切な形で分析されたものを作成することが重要です。具体的には、X軸やY軸の内容を適切に設定することが求められます。また、フォントや色、下線などの要素も伝達力を高めるために工夫する必要があります。 プレゼン資料の工夫は? 特に、パワーポイントを用いたセミナーのプレゼン資料の作成や、製品企画、売上分析を行う際の説明資料では、グラフなどを活用した説明が効果的です。市場分析や現状のビジネス分析においても、手元の数字を視覚化することには大きな意義があります。このようにして資料を作成する際には、なるべく数値だけでなく、その数値の意味をグラフで説明することを意識しています。 確認と改善はどう? 最後に、作成したグラフが適切かどうかを確認するため、講座で学んだ情報と照らし合わせることが必要です。また、他の人のレビューを通じて資料の伝わりやすさを確認し、改善を図ることも重要です。

クリティカルシンキング入門

仮説検証で視野を広げる思考法

切り口で見える? 複数のデータから一つの仮説を立てる際、切り口を変えると見え方が異なることがあります。これは、文章や言葉だけでなく、数字を分析する際にも思考が偏ることがあり得ると感じさせられました。今見えている情報に基づいて判断することに疑問を持つきっかけとなったと思います。 分析で何が見える? 事務リスク発生の原因分析においては、数値を扱う際の前処理やカテゴライズの過程で切り口を変えることが有効だと感じました。残業時間の増加や処理目標未達成の原因を分析する際にも、同様の手法で切り口を変えてカテゴライズすることで、見過ごされている問題を発見できる可能性があると思いました。 区切ると何が見える? 原因分析時のカテゴライズでは、単にキリのいい数字で区切るのではなく、仮説を立てた上で細かく区切ることが重要です。また、一度作業を終えたらそれで結論とせず、他に考えられる要素がないか一度立ち止まることも大切です。全体の定義を明確にし、漏れや重複がないように意識して区切ることを心がけるべきです。

アカウンティング入門

数字から読み解く経営の流儀

数字が語る真実は? 実在企業のP/LやB/Sを分析することで、単なる数字の羅列ではなく、人間の活動の流れを読み解く感覚を得ることができ、大変刺激的でした。その中でも、健全な負債が存在するという点は、事業のスケールアップに欠かせない要素であると強く印象に残りました。 数値把握の難しさは? これまで新規事業の立ち上げに携わる中で、事業領域ごとの適正な数値が把握できず、良くも悪くも過度な投資をしてしまったり、逆に必要な投資が不足していたりした経験があります。今回、成功事例と失敗事例を改めて振り返り、学びを深めたいと考えています。 現状理解のポイントは? また、まずは自社や同業他社の現状をしっかりと理解することが重要だと思います。私たちの会社は複数の業態にまたがる事業を展開しており、各事業部ごとにP/Lの数値が大きく異なるため、会社全体としてのB/Sも非常に複雑になっているはずです。身近な事から一歩ずつ学んでいくことで、より実践的な知識の獲得を目指していきたいです。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

データ・アナリティクス入門

数字が導く明日の解決策

問題箇所はどこ? 問題個所の特定は、次のアクションプランを考える上で非常に重要です。数値に基づいて問題箇所を洗い出し、優先順位を明確にすることで、納得のいくアクションプランを策定できます。また、数字に紐づく具体的な行動も同時に把握することで、プロセス全体の見直しの基準が整います。 課題解決はどう進む? 課題解決は、問題をプロセスに落とし込みながら進めることが求められます。What、Where、Why、Howといった基本の枠組みに沿って対応することで、業務改善の手法の一つとして、DX化推進の取り組みも効果的に実施できるのではないでしょうか。 目的設定はどう? 目的の設定においては、まず問題や課題を洗い出し、その中から複数ある項目に対して優先度を付け、分析と順位付けを徹底します。その上で、アクションプランを策定することが求められます。さらに、UI/UXに関わる場合はA/Bテストを取り入れ、スタンダードなフレームワークに沿った進め方を実施することが重要です。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

リーダーシップ・キャリアビジョン入門

散歩じゃ届かない目標の先に

具体目標はどう? 「散歩に出かけて富士山に登った人はいない」という先生の言葉から、具体的な目標設定の大切さを強く感じました。自分の仕事において、具体的な目標を発信しながら進められているかどうかを振り返ると、まだ自信が持てない部分があると感じています。一つ一つの仕事の積み重ねが成果に繋がると信じつつも、どの数字に結びついているのかを意識して取り組むことの重要性を再認識しました。 進行のスピードはどう? 現在、チームのリーダーとして活動しており、週次ミーティングの進行を担当しています。チーム全体の雰囲気は良好で、業務も順調に進んでいると感じていますが、進行のスピードにやや改善の余地があると感じています。そこで、ミーティングでは具体的な数値目標や行動目標を振り返る場を設け、より成果に結びつく会議運営を目指しています。 具体行動はどう? また、現職においてチームで成果を上げるために実践している具体的な行動や工夫について、さらなる知見を得たいと考えています。

「数字 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right