クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

クリティカルシンキング入門

MECE活用でビジネスアイデアを整理する技術

視点の違いをどう活かす? 視点の違いや切り分け方によって、様々な考え方が存在することを理解しました。特に、他の方からの意見で、視点を効率的に切り出す手法を学んだことは非常に参考になりました。これは、私が得意ではないMECEに基づく情報の洗い出しに役立つ効果的な方法であり、大変勉強になりました。 事業企画における情報整理の要点 事業企画においては、ソリューションの提供価値を考える際、誰のどの課題を解決するのかという情報整理を論理的に行うことが重要だと考えています。また、意見交換を通じて、これらの情報が事実に基づいていることの重要性を再認識させられました。また、情報収集の際に実際に現場を訪れることの重要性も感じました。 MECEでの考察がなぜ重要? 現在検討中の事業企画のソリューションが、誰にとってのどの課題を解決するのかを、順序立ててMECEに考えようと思います。そして、一度立ち返って、自分が検討している事業分野全体の課題や提供価値をMECEに考察し、本当にこのソリューションが必要なのかを改めて見直していきたいと思います。

データ・アナリティクス入門

仮説が映す未来への挑戦

仮説はどう説得力増す? データ分析において、仮説を立てることは説得力の向上に大変重要な要素だと実感しました。過去、現在、将来といった各目的に合わせて、結論や問題解決といった違いがある中で、仮説の活用は説得力を高めるだけでなく、自身の仕事に対する興味や関心を引き上げる効果もあると学びました。また、仮説を用いる際には、その精度を高め、迅速に検証を進めることが求められます。 報告はどのように変化? 自身の分析結果を報告する際、従来は仮説が正しいことを説明することを重視してきました。ですが、必ずしも直接的な正当性の説明にとどまらず、仮説自体の説得力をさらに高めることで、より充実した報告ができると感じるようになりました。今後は、この仮説とデータの活用方法を意識して実践していきたいと思います。 検証はなぜ時間かかる? 一方で、仮説の検証には予想以上に時間がかかることが多く、深い分析や検証が十分に行えていない現状もあります。他の参加者がどのように仮説検証を進め、時間管理や分析の精度を向上させているのかをぜひ伺いたいと思います。

戦略思考入門

知識から行動へ、戦略の軌跡

戦略の基本はどう? 戦略の根本を学び、最短かつ最速でゴールへ到達するための考え方を身につけました。とりあえず行動を起こすのではなく、実際に取り組むかどうかを判断するため、ビジネスフレームワークを用いて戦略を練る重要性を理解しました。 実践で何が掴める? また、「分かる」状態から「できる」状態へと変えるプロセスについて、さまざまな角度から学ぶことができました。知識を具体的な行動に結びつける方法も、実践を通して体得しました。 集客戦略はどうだ? この学びは、クライアント向けに集客効果のあるイベントを企画立案・運営する際に非常に役立ちます。たとえば、企画の際に差別化や独自性、実行すべきか否か、顧客層の明確化やニーズの分析など、様々な視点を整理する一助となりました。 差別化の秘訣は? 具体的には、依頼された手作りのマルシェ企画運営において、ターゲット、イベント内容、キャッチコピーなど類似した要素が多い中で、どのように差別化を図るかを検討する際、フレームワークを活用して全体を可視化し、論理的に整理する手法を実践しました。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

戦略思考入門

選択と集中で業務を効率化する方法

本当に捨てる意味は? 「捨てる」という行為は一見すると簡単に思えますが、意外と難しいと実感しました。ただ単に捨てるのではなく、目指すべきゴールを明確にすることで、必要なものと不要なものを選択する必要があると感じました。その際、数値的な根拠を示すことで、選択がより明確になると思います。限られた資源や時間の中で最速で目標に到達するには、「捨てる」ことが非常に重要だと感じました。 業務無駄は疑うべき? 業務効率化の観点でも、「捨てる」選択は必要です。たとえば、「以前からこうだったから」といった理由で行われている業務は、実際になぜ行っているのかわからない場合があります。このような業務には無駄があるため、「捨てる」ことを提案していくべきです。 業務改善の洗い出しは? 【業務効率化のステップ】 まず、自分の業務を洗い出してみましょう。その中で、不要な業務や惰性で行っている業務がないかを考えてみてください。不要だと感じた業務が本当に効果がないのかを検証し、その後、数値的根拠を示すことができれば、上司や同僚に提案を行うと良いでしょう。

クリティカルシンキング入門

論理的文章力が劇的に向上した理由

論理的な文章構成の重要性とは? ナノ単科の受講を通じて、論理的な文章構成の重要性を改めて実感しました。特に、無生物主語や受動態を避けることが、文章の明瞭さを大きく向上させることを学びました。また、短文を用いることで情報がより伝わりやすくなるという点も非常に参考になりました。 短文トレーニングの効果? 実際に、400文字程度の短文を週一で書くトレーニングを始めました。これにより、文章を書くことが論理的思考力のトレーニングにもなると感じています。特に、ピラミッド・ストラクチャーで情報を整理してから書く方法は、非常に効果的だと思います。 学んだ知識の実践活用 さらに、クライアントや上長への報告資料作成においても、今回学んだ知識を活かすことができました。具体性を欠かさず、適切な用語選択と情報の整理が求められる場面での自信がつきました。 今後に向けてのスキルアップ このナノ単科を通して得た知識とスキルは、今後の仕事においても大いに役立つことでしょう。継続的にトレーニングを続け、さらに文章力を向上させていきたいと思います。

データ・アナリティクス入門

目的意識で切り拓くデータの真実

学びの目的は? 今週の学習で、データ分析は単に数値を集めることではなく、「結果をもとに何を判断するか」を最初に明確にすることが重要だと学びました。目的が曖昧なままでは、比較軸がぶれてしまい、分析が数値の羅列に終始する危険性があると感じます。仮説や目的を起点に、条件の揃ったデータを比較することで、初めて意思決定につながる分析が実現できると理解しました。 改善行動の設計は? また、アプリ開発やマーケティングオートメーションツールを使った1to1配信においても、配信結果を確認する前に「改善すべき行動」や「判断したい内容」を明確にしておくことが大切です。配信の有無やセグメント別など、事前に比較軸を設計した上で効果検証を実施し、その結果を次の施策判断に生かすプロセスを業務に定着させたいと考えています。 分析手法の信頼は? さらに、現状の分析方法が的確であるのか、本来比較すべき指標や切り口は何か、判断を誤らないためにどの点に注意すべきかについて、実務視点での失敗事例も交えながら意見を共有し、議論を深めていきたいと思います。

クリティカルシンキング入門

グラフで魅せる!学びの秘訣

グラフ表現はどう? グラフの見せ方について、時系列のデータを表現する際は、縦棒グラフを用いて横軸に時系列の要素を記載するのが効果的です。一方、各要素ごとの主張を明確にする場合は、横棒グラフで表現する方法が適しています。 アイコンはどう活かす? 文字の表現に関しては、アイコンはあくまで補助的な役割を果たし、伝えたいメッセージとの整合性が重要です。 スライドで何を工夫? また、スライド作成では、伝えたい順序に沿ってグラフを配置し、強調したい情報には適切な形容詞を用いることで、聞き手にイメージを持たせる工夫が求められます。 戦略で何を狙う? 前週で触れた内容と共通する部分もありますが、このスキルはIT戦略を検討する際に、どの領域への投資対象とすべきかを提案する際に大いに役立つと考えています。たとえば、データをスライドに落とし込む場合、グラフを適切な形式と順序で配置し、アイコンや色を効果的に用いることで、相手にスムーズに内容を理解してもらえます。今回学んだことを意識し、今後の業務に活かしていきたいと思います。

マーケティング入門

現場で見えた差別化のポイント

セグメントの選定はどう? セグメント選定の基準については、これまでの仕事では優先順位がうまく反映できていなかったことに気づきました。今回、影響力のあるセグメントへリーチさせることもひとつの切り口であると学びました。 ポジショニングの重要性は? また、ポジショニングを検討する際には、自社が打ち出したい強みだけに注目するのではなく、顧客が求める点や他社との差別化ができているかという観点で選ぶことの重要性を再認識しました。 6Rランクの活用法は? さらに、6Rのランクは実際の業務に活用できると感じています。たとえば、既存の顧客層である50代の男性に向け、ご家族向けにこの商品を提案するという販促活動は効果的だと思います。車部品の場合、男性の方が車に詳しく、性能に関心を持ちやすいという点から、このアプローチは特に有効です。 差別化の工夫はどう? また、他社との性能の差がつきづらい商品に関しては、差別化するための工夫が求められると感じました。例えば、独自に調査を実施し、その結果を表記するなどの方法が考えられます。

クリティカルシンキング入門

データ分析で見える!戦略立案の新視点

データ分解の重要性とは? データを分解することで、事象の原因について仮説を立てやすくなると理解しました。ただし、分解方法を誤ると要因が見えにくくなる場合があるため、複数のパターンで試行して最適な方法を見つける必要があります。また、分解には漏れなく重複なく全体を分解していくことが重要です。さらに、異なる切り口で分解することで、要因を特定しやすくなることも判明しました。 顧客分析で見つかるボトルネック 新規顧客と既存顧客に分けて、受注に至るまでの各プロセスにどのようなボトルネックがあるのか分析したいと考えています。同様に、業種や規模、地域といった異なる視点からも分析を行い、どこにアプローチをすれば最大の効果が得られるか仮説を立て、実践してみたいです。 効果的な営業戦略を立案するには? 営業戦略を立案する際には、まず業務プロセスを見直し、データを取得できるようにする必要があります。アプローチの回数や提案の回数、対面かWebかといった各種データを分析可能にするため、業務プロセスの改善から着手する必要があることが分かりました。

アカウンティング入門

数字を読み解く力を養う振り返り

P/Lにストーリーは必要? 今までP/Lを単なる数字として捉えていましたが、ストーリー性を持たせることで、内容が非常に理解しやすくなりました。この考え方は、自分の会社だけでなく、事業会社や営業所、支店ごとにも応用できると感じました。こうした異なる視点から考えることで、単に費用削減をするだけが正解ではなく、それが時には逆効果になる場合もあることを理解しました。 どうやって費用の正当性を議論する? P/Lを考える際には、どこにどのような費用がかかっているのか、その理由は何かを論じることで、費用の正当性を議論できます。そして、自社だけでなく、他社との比較や業界平均をもとにスタートアップに対するP/L目線を取り入れることで、議論をより具体的にすることが可能になります。 自社内の数字をどう活用する? まずは自社内で見える数字を整理し、会社がどこに注力し、どこに資金を投じているかを把握しようと思います。その後、そこで得た気づきをもとに社内のメンバーにヒアリングを行い、売上高を伸ばすために必要な材料として活用したいと考えています。
AIコーチング導線バナー

「効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right