デザイン思考入門

実践をカタチに!先輩の学び

仲間とどんな刺激? グループワークやLIVE授業では、仲間のプロトタイプを拝見し、紙で模型を作成したり、AIを活用して画像やプレゼン資料を作成する様子に大変刺激を受けました。体調不良でプロトタイプの準備が十分にできなかったことには申し訳なさも感じましたが、実際に目で確認することで、ユーザーがどのように使うか具体的にイメージでき、そこから自然に議論やフィードバックが生まれて次のプロトタイプへとつながっていくと実感しました。 店舗改善はどう進む? 店舗オペレーション改善業務においては、お客様や従業員といった各ユーザーを中心に「店舗のあるべき姿」を考える際、デザイン思考を取り入れていきたいと考えています。特に、以下のポイントを意識して実践しようと思います。 共感で何を掴む? まず、①共感~課題定義の段階では、インタビュー時にコーディングを活用し定性分析の精度を高めるとともに、全体向けに抽象的な解決策を求めるのではなく、ペルソナを設定して特定のニーズに絞ることで、明確で具体的な課題を定義します。また、カスタマージャーニーマップを用いてユーザーの思考や感情を可視化するため、自ら体験することが有効であると考えています。 発想で見える未来? 次に、②発想(イデーション)では、質より量を意識し、多くの新しいアイデアを生み出すために楽しい雰囲気でブレインストーミングを実施します。ダブルダイアモンドの考え方を念頭に、多くのアイデアを発散させるとともに、SCAMPER法を活用して他にない視点を積極的に取り入れるよう心がけます。 形はどう作る? そして、③プロトタイプ~テストの段階では、モノだけでなくサービスやオペレーションの動きなど、形のないものでも「まずは形にする」ことを重視します。プロトタイプはスピード感を持って繰り返し作成し、最初から完璧を求めずに改善を重ねることが大切だと感じています。 成果共有はどうする? 自身の業務では、インタビューや観察、ブレインストーミングの機会が多いため、今回学んだ視点や方法を早速取り入れ、メンバーへ共有していきたいと考えています。また、プロトタイプ作成において「まずは形にする」「スピーディーに」「繰り返し行う」という姿勢を、これまで以上に意識するためのスケジューリングから始めていくつもりです。楽しい環境で多くの発散を促すことが、新しいアイディアを生む鍵であり、その重要性をメンバーにも伝えていきたいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

リーダーシップ・キャリアビジョン入門

エンパワメント実践で自律を育む方法

エンパワメントって何? エンパワメントについて、日常業務である程度理解していたつもりでしたが、特に重要だと思われる目標設定の観点を整理できたことが非常に有意義でした。エンパワメントを行う際は、相手が目標や仕事を理解しているか(MUST)、努力すればできるか(CAN)、そしてやる気になるか(WILL)がポイントだと考えています。 リーダーの役割は? エンパワメントとは、目標達成のために組織構成員が自律的に行動できる力を与えるためのリーダーシップ技術の一つです。リーダーは組織構成員に権限を委譲しますが、最終責任はリーダー自身が持つという立場を取ります。そのため、リーダーは目標を明確にし、適切な仕事を割り当て、計画の策定や実行プロセスを支援します。 目標はどう決める? 目標設定において重要なのは、組織構成員をやる気にさせることです。メンバーが分からない場合は説明し、できない場合は不安や困りごとを引き出して共に解決し、やりたくない場合にはやりたくなるような意義付けが必要です。良い目標とは、使命感に基づく意義があり、行動が具体的にイメージでき、測定基準と度合いが明確なものです。 どの仕事が適切? エンパワメントに向く仕事と向かない仕事があります。向く仕事は、メンバーが目標を理解し、能力より少し高い難易度のもの、つまり育成の観点があるものです。逆に向かない仕事は、権限の限界があるもの、ミスが許されないもの、緊急の対応が求められるもの、一度きりのものなどです。 任せ方はどうする? 仕事を任せる際には、期限と成果の期待値を伝えるだけでなく、目標設定を行います。メンバーがその仕事をやりたくなるような意義を伝え、育成を視野に入れた難易度設定を行い、阻害要因を取り除くなどの対応が必要です。 結果をどう振り返る? さらに、これまで行ってきたエンパワメントの結果も整理したいと考えています。現在、上半期の業績計画における予算と実績の差異について、メンバーにその原因追求と改善策の策定を依頼しています。来週にはレビューが上がってくる予定ですが、その際、真因分析や改善策が不十分であれば、これまでのように指示するのではなく、メンバーの説明から不足点を質問で引き出し、阻害要因を取り除くことで、彼らが自発的に真因分析の深化や改善策のブラッシュアップができるよう、目標設定とプロセス管理の面で支援していきたいです。

マーケティング入門

ターゲットと価値の新発見!魅力倍増プラン

誰に向ける思いは? 「誰に何を」の「誰に」の部分の重要性を学びました。特に、現在取り扱っているSaaSサービスでは、開発側の「誰に」の思いが先行しがちだと感じています。もちろん、思いは大切ですが、想定している市場に十分なポジショニングがあるか、自社製品が届けることができる価値が十分に感じられる対象であるかを客観的に分析したいと思います。また、複数の価値を組み合わせて提供することで、価値を最大化する意識を持ち続けたいです。 魅力伝達はどうする? プロダクトの強みやアピールポイントを考える際、アピールポイントとそのターゲットを一対一で考えがちでした。今後は、複数のアピールポイントを組み合わせて、より魅力的な形で伝える視点を重視していきたいです。 訴求対象は何処? ①プロダクトを訴求するターゲット検討の場面では、クラウド型サービスの特性上、ターゲットを見直し、開発のロードマップを検討する必要があります。現状、開発側の「誰に」の思いが先行しがちな状況なので、今回学んだ「想定したターゲットに関する市場規模の確認」や「バックオフィス向けサービスの概念の見直し」を行いたいです。 認知施策は何が鍵? ②ターゲットへの認知獲得からコンバージョン(CV)の施策やメディア内容の検討では、開発したプロダクトのメリットを洗い出し、ポジショニングマップを作成したいと考えています。このポジショニングマップを共通言語とすることで、チーム内でも一致した訴求ポイントや施策検討が行えるようにしたいです。 市場規模は再確認? まず、現在のターゲット市場規模を確認し、売上見込みの再評価から始めたいと思います。そして、バックオフィス向けのプロダクトが経理部向けという状況を見直し、本当にメインターゲットが経理部でいいのか再確認します。そのためには、考えうるターゲットを再度洗い出し、各市場規模を整理し、6Rのフレームワークで判断を確かなものにしたいです。 差別化の強みは? プロダクトのメリットを洗い出す際には、「クラウド」「AIの活用」「多言語対応」「UIの良さ」などを挙げ、それらを組み合わせることで、他社との差別化を図ることを目指します。このプロセスは一人で行うだけでなく、チームで行い、新たな強みやポジショニングを発見するとともに、チームで一貫したポジショニングイメージを共有したいと考えています。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

問いが未来を拓く学びの一歩

課題の出発点は? 仕事で求められる課題に取り組むには、まず「問い」を明確にすることが大切です。問いがはっきりしていないと、自分だけでなく関係者全員の考えの方向性が揃わず、答えを見つけるのが難しくなります。また、問いが大きすぎると、思考が広がりすぎてしまうため、適切に絞り込む必要があります。 課題の見方は? 問いを明確にするためには、まず課題そのものを正しく把握することが求められます。直感的なイメージだけでは、思い込みや偏った視点が働くことがあるため、利用者、経営者、担当者、競合者、上司、部下など、さまざまな具体的視点から課題を見ると、新たな糸口が見つかりやすくなります。さらに、関係するデータをもれなく、ダブりなく分析することも、新たな視点に繋がります。 答えは見えてる? その結果、たとえ明確な像が浮かばなくても、問題に対して「解」がなかったという答えが得られる場合もあります。問いに取り組む際には、横道にそれず、関係者全体の時間を無駄にしないよう、最初に示した方向性に沿って答えを求めることが重要です。 事例から何学ぶ? 具体的な事例として、郵送検診の受診者数改善の取り組みを考えます。これまでは、受診者が一般に理解しやすい案内文を作成するため、他の医療機関の文例を参考にするのみで、データ分析に基づいたアプローチは行われていませんでした。今後は、受診者の年齢層や性別、その他の属性をしっかりと分析し、アプローチすべき対象を明確にした案内文を作成することが求められます。案内の方向性が定まった段階で、同僚からの意見も取り入れながらプランを練っていきます。 伝える工夫は? また、成果につながるアウトプットには、何を伝えたいのか目的を明確にし、主語や述語をはっきりさせることが重要です。説明の組み立ては、結論、目的、理由の順で整理し、状況分析には適切な表やグラフを利用するなど、情報の流れや優先順位にも配慮する必要があります。 今後の課題は? 最後に、「問い」を明確にすることの重要性や、その際の制約について具体的に理解できる文章になっている点は評価できます。さらに、問いを絞り込む具体的な手法や、異なる視点を活用した経験に基づく考察を加えることで、理解が一層深まることを期待しています。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

データ・アナリティクス入門

平均だけじゃ見えない真実

単純平均の落とし穴は? 単純平均は、ばらつきを見えにくくし、また外れ値により大きく値がぶれる可能性があります。そのため、何が適切な代表値であるかを十分に考慮した上で、比較や分析に臨むことが大切です。 標準偏差で何が分かる? 標準偏差に関しては、波の大小をイメージすることで、そこから導き出せる情報がわかりやすくなります。これにより、平均だけでは捉えきれないデータの分布の実態を理解しやすくなります。 年齢層の違いを把握するには? 具体的なデータセットを例に挙げると、例えば、ある組織の従業員の平均年齢が38歳の場合、全体は大まかに新卒5年未満、30代後半~40代初頭、60歳前後という3グループに分けることができます。単純な平均値だけではこれらの年齢層のばらつきを正確に反映できませんが、標準偏差を合わせて求めることで、年齢層の多様性をより具体的に把握し、組織の魅力としてアピールする材料とすることが可能です。 外れ値の影響は? また、外れ値がビジネス上の意思決定にどのように影響を与えるかという視点も重要です。たとえば、顧客ごとの売上金額を分析する際、1%程度の大口顧客の存在が全体の平均を引き上げてしまうと、実際の単価水準が正しく把握できなくなります。単純平均のみを頼りにすると、実態との差を見誤り、競合との比較でも課題が見えづらく、適切な方策に結び付けることが難しくなります。 多角的分析は有効? このような背景から、単に平均を算出するだけでなく、加重平均や中央値、そして標準偏差を併用することで、データのばらつきを把握し、その意味するところを考察する姿勢が重要だと改めて感じました。年度末のまとめや次年度への申し送りの際にも、前年や前々年との比較を行い、伸び率や減少率を幾何平均で求めるなど、より多角的な視点でデータを分析することが求められます。 データの可視化は? 計算式の意味を完全に理解していない部分もありますが、情報やデータが揃っているなら、まずは標準偏差を算出して、その意味合いを考えることから始めると良いでしょう。数字をただ並べた表だけでなく、ヒストグラムなどを用いてばらつきを可視化することが、まず第一歩だと感じています。

戦略思考入門

経営戦略を学び、実務で活かす方法を見つけた!

経営戦略の全体像とは? 企業が持続的な競争優位を確立するために必要な経営戦略について学んだことが、この講座全体を通じて最も印象に残りました。経営戦略の全体像や競争優位性を築くための重要な要素について、深く理解することができました。特に、経営戦略の立案プロセスにおいて、事業環境や自社の状況を分析し、解決策を策定するための基礎理論やフレームワークを学べた点が大変有意義でした。 分析から得た学びは? 経営理念やビジョンが事業の始まりであり、これを基に業界分析やマクロ分析、外部内部分析、環境分析を行うことで、自社の成功要因を見極めることの重要性を再認識しました。また、バリューチェーンの把握と必要に応じた改善や再構築の重要性についても学びました。現状の市場地位で自分の立場を理解し、必要に応じて戦略を改善することも重要です。 知識をどう活かすか? 今回の講座で学んだ内容は、経営企画室で勤務している私にとって多岐にわたる場面で活用できると感じています。経営戦略の立案プロセスにおいて、事業環境や自社の状況を分析するための基礎理論やフレームワークを学んだことは、日常業務に直結します。例えば、新規事業の立ち上げや既存事業の見直しを行う際に、業界分析やマクロ分析、外部内部分析、環境分析を用いて、より精緻な戦略を策定することができると思います。 実務での具体的行動は? 全体の講座で得た知識を実務に活かすため、以下の具体的な行動を取ります。まず、業界分析やマクロ分析を定期的に行い、最新の情報をフィードバックします。次に、SWOT分析やPEST分析を活用し、自社の強み・弱み、機会・脅威を明確にし、具体的な戦略オプションを提案します。また、バリューチェーンの最適化により、各部門の業務プロセスを詳細に分析し、無駄を排除して効率化を図ります。そして、チーム内のコミュニケーションを強化し、定期的なミーティングやフィードバックを実施します。 成長するためのステップは? 最後に、ネットワーキングを活用し、業界イベントやセミナーに参加して新たな知識や人脈を得たいと思います。専門書やオンラインコースを通じて自己学習を継続し、知識をアップデートします。

マーケティング入門

ターゲット発見で広がるビジネスの可能性

ターゲットは誰? 『誰に売るか』をテーマにした講義を受け、ターゲットに合わせた店づくりや商品開発の重要性を学びました。既存の商品でも、正しいターゲットを見つけることで新たな顧客を獲得する可能性が広がります。その際、以下の三つが重要です。①強みを組み合わせて差別化できる領域を探すこと。②利用場面を具体的にイメージし、顧客にとっての価値を見つけること。③ターゲットと提供価値を繋げるプロモーション施策を展開することです。 理論はどう実践? 講義の中で、ポジショニングの成功例として「レッツノート」や「本炭窯」が取り上げられましたが、理論を実践に移すのは簡単ではありません。狙った市場の顧客が本当にその提供価値を認めるか、具体的にどんな用途で使いどんな価値を求めるのか、ここの理解が非常に重要で、前回学んだ真のニーズと絡めて考える必要性を感じました。具体的な行動としては、身近な商品や自社の商品、サービスについて新しい用途や使用場面を想像してみることが提案されました。日々の生活の中で、例えばコンビニに立ち寄った際などに、この訓練を行うと良いです。 市場選びはどう? またセグメンテーションとターゲティングでは、有限の経営資源を有効に活用するために自社の特性に合った市場を選ぶことが重要です。市場の魅力と勝ち残る可能性を慎重に評価することが求められ、ファッション業界には新規性を重視し、ビジネスでは保守性を重視するなど、時と場合によって変わる顧客の志向にも留意する必要があると学びました。 商品の位置づけは? ポジショニングマップの活用も重要で、これは自社商品の市場での位置づけを視覚的に把握するためのツールです。競合との違いや顧客の認識を理解しやすく、機能だけでなくブランドイメージや顧客体験を考慮することが次のステップと感じました。 競合との差は? 最後に、競合分析を通じて、自社の差別化ポイントを明確にすることが、提案資料やプロモーションにおいて顧客の共感を得る鍵となります。競合の強みや弱みを分析し、自社ならではのユニークな価値を見つけ、それを効果的に伝えることが重要です。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

「分析 × イメージ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right