マーケティング入門

マーケティング思考で業務を進化させよう

学びはどこから? 業務への学びの落とし込みについて、私はライブ授業でのグループワークを通じて、学んだことが行動や思考に十分に反映されていないことを感じました。特に、最近のプロダクトに関する案件で、メインコピーを考える際にポジショニングの観点を意識できていませんでした。ライブ授業で学んだ方法を活用して競合分析を行い、顧客ニーズを満たすための明確なポジショニング軸をチームと共に検討し、根拠を持って取り組んでいきたいと考えています。 生活で気づくヒントは? 日常生活でもマーケティング思考を磨けることを学びました。ヒット商品や失敗した商品の要因を考察し、ターゲットを分析することで、業務だけでは補えない経験を得たいと思っています。 ターゲティングは何から? ターゲティングの明確化に関しては、現在「経理部」をターゲットとしているものの、より具体的なセグメントへの分解ができていません。受注傾向を深掘りし、ターゲティングを明確に再設定し、社内の共通言語として共有したいと考えています。また、お客様の声を聞く場面が多くあることで、顧客ニーズを捉えていると誤解しがちです。今一度、顧客が求めていることをしっかり理解したいと思います。 客観視点はどうする? プロダクトへの思い入れが強く、客観的なアウトプットの判断ができていないと感じています。製販一体の良さを活かしつつも、プロダクトへの関与がアウトプットの客観性を損なうリスクについても認識し、現在の訴求内容が自社視点に偏っていないか顧客視点で見直したいと思っています。各アウトプットが顧客にどのようなイメージを与えているかを整理し、望ましいイメージかどうかを検討していく必要があります。 根拠説明は何かしら? まずは自らが根拠を持ってターゲティングを説明できるようになりたいです。受注分析に加えて、3C分析やSWOT分析を活用し、内外の状況を整理した上で、根拠を持ったターゲティングを行いたいと考えています。その後、チーム全体で統一したターゲティングを共有し、ターゲット優先度の調整を行うことが重要だと思います。チームとして共通の理解を持つことが目標です。 イメージ整理は正しい? 顧客に与えたいイメージについて、ポジショニングを整理し、明確化することが必要です。まずは各アウトプットが顧客に与えているイメージを把握し、それが望ましいものであるかをポジショニングと照らし合わせてブラッシュアップしたいと思います。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

デザイン思考入門

実践をカタチに!先輩の学び

仲間とどんな刺激? グループワークやLIVE授業では、仲間のプロトタイプを拝見し、紙で模型を作成したり、AIを活用して画像やプレゼン資料を作成する様子に大変刺激を受けました。体調不良でプロトタイプの準備が十分にできなかったことには申し訳なさも感じましたが、実際に目で確認することで、ユーザーがどのように使うか具体的にイメージでき、そこから自然に議論やフィードバックが生まれて次のプロトタイプへとつながっていくと実感しました。 店舗改善はどう進む? 店舗オペレーション改善業務においては、お客様や従業員といった各ユーザーを中心に「店舗のあるべき姿」を考える際、デザイン思考を取り入れていきたいと考えています。特に、以下のポイントを意識して実践しようと思います。 共感で何を掴む? まず、①共感~課題定義の段階では、インタビュー時にコーディングを活用し定性分析の精度を高めるとともに、全体向けに抽象的な解決策を求めるのではなく、ペルソナを設定して特定のニーズに絞ることで、明確で具体的な課題を定義します。また、カスタマージャーニーマップを用いてユーザーの思考や感情を可視化するため、自ら体験することが有効であると考えています。 発想で見える未来? 次に、②発想(イデーション)では、質より量を意識し、多くの新しいアイデアを生み出すために楽しい雰囲気でブレインストーミングを実施します。ダブルダイアモンドの考え方を念頭に、多くのアイデアを発散させるとともに、SCAMPER法を活用して他にない視点を積極的に取り入れるよう心がけます。 形はどう作る? そして、③プロトタイプ~テストの段階では、モノだけでなくサービスやオペレーションの動きなど、形のないものでも「まずは形にする」ことを重視します。プロトタイプはスピード感を持って繰り返し作成し、最初から完璧を求めずに改善を重ねることが大切だと感じています。 成果共有はどうする? 自身の業務では、インタビューや観察、ブレインストーミングの機会が多いため、今回学んだ視点や方法を早速取り入れ、メンバーへ共有していきたいと考えています。また、プロトタイプ作成において「まずは形にする」「スピーディーに」「繰り返し行う」という姿勢を、これまで以上に意識するためのスケジューリングから始めていくつもりです。楽しい環境で多くの発散を促すことが、新しいアイディアを生む鍵であり、その重要性をメンバーにも伝えていきたいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

リーダーシップ・キャリアビジョン入門

エンパワメント実践で自律を育む方法

エンパワメントって何? エンパワメントについて、日常業務である程度理解していたつもりでしたが、特に重要だと思われる目標設定の観点を整理できたことが非常に有意義でした。エンパワメントを行う際は、相手が目標や仕事を理解しているか(MUST)、努力すればできるか(CAN)、そしてやる気になるか(WILL)がポイントだと考えています。 リーダーの役割は? エンパワメントとは、目標達成のために組織構成員が自律的に行動できる力を与えるためのリーダーシップ技術の一つです。リーダーは組織構成員に権限を委譲しますが、最終責任はリーダー自身が持つという立場を取ります。そのため、リーダーは目標を明確にし、適切な仕事を割り当て、計画の策定や実行プロセスを支援します。 目標はどう決める? 目標設定において重要なのは、組織構成員をやる気にさせることです。メンバーが分からない場合は説明し、できない場合は不安や困りごとを引き出して共に解決し、やりたくない場合にはやりたくなるような意義付けが必要です。良い目標とは、使命感に基づく意義があり、行動が具体的にイメージでき、測定基準と度合いが明確なものです。 どの仕事が適切? エンパワメントに向く仕事と向かない仕事があります。向く仕事は、メンバーが目標を理解し、能力より少し高い難易度のもの、つまり育成の観点があるものです。逆に向かない仕事は、権限の限界があるもの、ミスが許されないもの、緊急の対応が求められるもの、一度きりのものなどです。 任せ方はどうする? 仕事を任せる際には、期限と成果の期待値を伝えるだけでなく、目標設定を行います。メンバーがその仕事をやりたくなるような意義を伝え、育成を視野に入れた難易度設定を行い、阻害要因を取り除くなどの対応が必要です。 結果をどう振り返る? さらに、これまで行ってきたエンパワメントの結果も整理したいと考えています。現在、上半期の業績計画における予算と実績の差異について、メンバーにその原因追求と改善策の策定を依頼しています。来週にはレビューが上がってくる予定ですが、その際、真因分析や改善策が不十分であれば、これまでのように指示するのではなく、メンバーの説明から不足点を質問で引き出し、阻害要因を取り除くことで、彼らが自発的に真因分析の深化や改善策のブラッシュアップができるよう、目標設定とプロセス管理の面で支援していきたいです。

データ・アナリティクス入門

仮説思考で切り拓く学びの力

仮説の意義とは何? 仮説思考は、現象をそのまま眺めるだけではなく、問題の所在を明確にするための鍵であると実感しました。単に現象を見るのではなく、複数の仮説を立てて検証することによって、より正確に課題を把握できると学びました。一つの仮説に固執すると誤った結論に至るリスクがあるため、視野を広げ、いくつかの仮説を同時に検討することが重要だと感じました。 フレーム活用の意味は? また、3Cや4Pといったフレームワークを用いることで、要因を体系的に整理し抜け漏れを防ぐことができる点が大きな収穫でした。特に、4Pで「Product」「Price」「Place」「Promotion」を確認する手法は、課題を具体的かつ網羅的に分析するための有効なアプローチであると理解しました。さらに、「結論・問題」×「過去・現在・未来」という軸を意識することで、時系列に沿った深い分析が可能になり、原因と改善策の両方を考えやすくなることを実感しました。 評価制度の未来は? 今回学んだ仮説思考の考え方を、評価制度や研修施策の設計にどのように活かすかを具体的にイメージしました。まず、評価の目的は単なる採点ではなく、人材育成に直結させることを明確に定義します。その上で、評価結果に基づき、たとえば「特定スキルが不足している層が存在する」「評価が高い層でもばらつきが大きい」「評価基準が現場の実態と乖離している」といった複数の仮説を設定しました。 分析方法に疑問は? さらに、3Cでは評価制度、その受け手である社員、他社の研修事例を参考に、4Pでは研修内容、費用、実施場所、告知方法に注目することで、各要因を整理し網羅性を確保しました。仮説を検証する際は、定量的な評価スコアの分布や標準偏差、ヒストグラムなどで偏りを確認するとともに、現場のマネージャーや受講者へのヒアリング、アンケートによる定性的なデータ収集を重視しました。「誰に聞くか」「どのように聞くか」を明確にすることで、より意味のあるデータが得られると感じました。 研修施策の狙いは? 最終的に、こうした検証結果を踏まえて、評価が低い層には基礎研修、高評価だがばらつきが大きい層にはリーダーシップ強化といったターゲット別の研修施策を設計するイメージを持ちました。これにより、単なる評価から一歩進んだ、実践的な人材育成へと繋げることができると考えています。

マーケティング入門

ターゲットと価値の新発見!魅力倍増プラン

誰に向ける思いは? 「誰に何を」の「誰に」の部分の重要性を学びました。特に、現在取り扱っているSaaSサービスでは、開発側の「誰に」の思いが先行しがちだと感じています。もちろん、思いは大切ですが、想定している市場に十分なポジショニングがあるか、自社製品が届けることができる価値が十分に感じられる対象であるかを客観的に分析したいと思います。また、複数の価値を組み合わせて提供することで、価値を最大化する意識を持ち続けたいです。 魅力伝達はどうする? プロダクトの強みやアピールポイントを考える際、アピールポイントとそのターゲットを一対一で考えがちでした。今後は、複数のアピールポイントを組み合わせて、より魅力的な形で伝える視点を重視していきたいです。 訴求対象は何処? ①プロダクトを訴求するターゲット検討の場面では、クラウド型サービスの特性上、ターゲットを見直し、開発のロードマップを検討する必要があります。現状、開発側の「誰に」の思いが先行しがちな状況なので、今回学んだ「想定したターゲットに関する市場規模の確認」や「バックオフィス向けサービスの概念の見直し」を行いたいです。 認知施策は何が鍵? ②ターゲットへの認知獲得からコンバージョン(CV)の施策やメディア内容の検討では、開発したプロダクトのメリットを洗い出し、ポジショニングマップを作成したいと考えています。このポジショニングマップを共通言語とすることで、チーム内でも一致した訴求ポイントや施策検討が行えるようにしたいです。 市場規模は再確認? まず、現在のターゲット市場規模を確認し、売上見込みの再評価から始めたいと思います。そして、バックオフィス向けのプロダクトが経理部向けという状況を見直し、本当にメインターゲットが経理部でいいのか再確認します。そのためには、考えうるターゲットを再度洗い出し、各市場規模を整理し、6Rのフレームワークで判断を確かなものにしたいです。 差別化の強みは? プロダクトのメリットを洗い出す際には、「クラウド」「AIの活用」「多言語対応」「UIの良さ」などを挙げ、それらを組み合わせることで、他社との差別化を図ることを目指します。このプロセスは一人で行うだけでなく、チームで行い、新たな強みやポジショニングを発見するとともに、チームで一貫したポジショニングイメージを共有したいと考えています。

データ・アナリティクス入門

問いで切り拓く学びの現場

なぜ仮説が重要? 仮説思考について学んだ内容は、まず知識の幅を広げるために「なぜ」を5回繰り返す問いかけや、別の観点からの検証、時系列に沿った動的な理解、将来を予測する思考実験、類似や反対する事象との比較といった手法が有効であるという点です。 どんな仮説を組み立てる? また、ラフな仮説を構築する際には、常識にとらわれず新しい情報を組み合わせ、アイデアの発想を止めずに続けることが重要だと感じました。 検証はどう進む? 検証ステップでは、必要な検証の程度を見極め、枠組みを設定して情報を集め、分析するプロセスが重要です。仮説を肉付けし、再構築することで、より具体的に検証を繰り返していく方法が役立つと学びました。 リーダーは何を実践? リーダーの役割については、情熱をもって率先して行動することが求められ、積極的に発言したり、質問を通じてメンバーを育成したりすることが大切です。チーム内で役割を分担し、各自が切磋琢磨しながら仮説検証に取り組む環境の重要性も強調されました。 マーケティングはどう考える? マーケティングに関しては、セリングが製品ありきで成果を追求するのに対し、市場や顧客ニーズに焦点を当てるマーケティングの考え方が印象深かったです。まず外部環境と内部環境を分析して市場の機会を探り、性質やニーズによるセグメンテーションを行い、ターゲティングを明確にした上で、顧客の頭の中に価値ある製品イメージを構築するポジショニングが鍵となると理解しました。 原因は何だろう? 原因を探る際は、プロセスに分解し、複数の選択肢を洗い出して根拠を持って絞り込む方法が有効です。また、A/Bテストのように複数の案を試しながら効果を比較検証するシンプルな方法も、低コストで実施しやすいと感じました。 どんな学びを得た? 全体を通して、売り上げ減少の原因や新規プロジェクトの構想に対して実務で活用できる仮説思考の手法に触れることができました。特に、問いを繰り返すことで思考を深める方法や、リーダーとしての役割がいかに重要であるかを再確認できた点が印象に残りました。マーケティングの基本概念に基づいて、顧客満足度を重視した商品作りやサービスの開発プロセスについて、実際の経験をお持ちの方の意見もぜひお聞きしたいと思います。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

問いが未来を拓く学びの一歩

課題の出発点は? 仕事で求められる課題に取り組むには、まず「問い」を明確にすることが大切です。問いがはっきりしていないと、自分だけでなく関係者全員の考えの方向性が揃わず、答えを見つけるのが難しくなります。また、問いが大きすぎると、思考が広がりすぎてしまうため、適切に絞り込む必要があります。 課題の見方は? 問いを明確にするためには、まず課題そのものを正しく把握することが求められます。直感的なイメージだけでは、思い込みや偏った視点が働くことがあるため、利用者、経営者、担当者、競合者、上司、部下など、さまざまな具体的視点から課題を見ると、新たな糸口が見つかりやすくなります。さらに、関係するデータをもれなく、ダブりなく分析することも、新たな視点に繋がります。 答えは見えてる? その結果、たとえ明確な像が浮かばなくても、問題に対して「解」がなかったという答えが得られる場合もあります。問いに取り組む際には、横道にそれず、関係者全体の時間を無駄にしないよう、最初に示した方向性に沿って答えを求めることが重要です。 事例から何学ぶ? 具体的な事例として、郵送検診の受診者数改善の取り組みを考えます。これまでは、受診者が一般に理解しやすい案内文を作成するため、他の医療機関の文例を参考にするのみで、データ分析に基づいたアプローチは行われていませんでした。今後は、受診者の年齢層や性別、その他の属性をしっかりと分析し、アプローチすべき対象を明確にした案内文を作成することが求められます。案内の方向性が定まった段階で、同僚からの意見も取り入れながらプランを練っていきます。 伝える工夫は? また、成果につながるアウトプットには、何を伝えたいのか目的を明確にし、主語や述語をはっきりさせることが重要です。説明の組み立ては、結論、目的、理由の順で整理し、状況分析には適切な表やグラフを利用するなど、情報の流れや優先順位にも配慮する必要があります。 今後の課題は? 最後に、「問い」を明確にすることの重要性や、その際の制約について具体的に理解できる文章になっている点は評価できます。さらに、問いを絞り込む具体的な手法や、異なる視点を活用した経験に基づく考察を加えることで、理解が一層深まることを期待しています。

データ・アナリティクス入門

代表値で読み解くデータのヒント

原因の絞り方は? 原因を探る際は、初めから抽象的で幅広い視点に陥らないよう注意が必要です。たとえば、複数の商品がある場合、どのカテゴリに低下傾向があるかという結論のイメージをあらかじめ明確にしておくことが重要です。 代表値の違いは? 次に、代表値の使い分けについて学びました。全体の傾向を把握するためには平均値が有効ですが、極端な値の影響を排除する場合は中央値が適しています。そして、一番多いパターンを知るためには最頻値を用いると良いでしょう。平均値だけでは見えない問題を把握するために、ばらつきや元データの傾向も確認することが求められます。 グラフはどう使う? また、グラフの使い分けが印象に残りました。数量の比較には棒グラフ、構成比を確認する際には円グラフが効果的です。データの可視化を行うことで、変化や傾向が一目で理解できるようになります。 率と実数の意味は? さらに、率と実数の両方を見る姿勢の大切さも学びました。率だけでは、実際の数が少なすぎる場合に意味が薄れる可能性があるため、実数と併せて確認する必要があります。逆に、率でも実数でも共に減少している場合は、本当に問題があると判断すべきです。特に回収数が一定でないアンケート調査では、基本的に割合での比較が推奨されます。 障害分析の見方は? 障害分析においては、障害対応時間(MTTR)の検証が具体例として有効です。極端な値に影響されない実態把握のためには平均値だけでなく、中央値の確認も欠かせません。さらに、最頻値を合わせて見ることで、改善すべき典型的なケースを特定することが可能です。 エラー分析はどう? エラー分析においては、エラー率と実数の両面から検討することが重要です。たとえば、ある機能でエラー率が高くても利用者数が少なければ意味が薄れますし、逆にエラー率が低くても多数の利用者に影響している場合は大きな問題と言えます。 具体的な行動は? 具体的な行動としては、障害レポートのテンプレートに「平均値」「中央値」「最頻値」の項目を追加し、代表値の使い分けを習慣化することが推奨されます。また、エラー率を報告する際には、必ず実数も併記するルールをチーム内で提案するよう心がけると良いでしょう。
AIコーチング導線バナー

「分析 × イメージ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right