データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

デザイン思考入門

チームで創るアイデア革命

どの価値を見つける? バリュープロポジションの考え方が特に印象に残りました。自社が提供する価値、競合他社との違い、そして顧客が真に求める価値の重なりに着目することで、独自性の高い提案が可能になります。ただし、あまりにもニッチになり過ぎないよう、顧客ニーズとのバランスを保つ点に注意が必要です。 発想をどう広げる? また、発想においては「量を出すこと」や「視覚的な刺激」、「多様なチームでの取り組み」が効果的だと感じました。初めて学んだSCAMPER法では、代用、組み合わせ、応用、修正、転用、そぎ落とし、再構成というそれぞれの視点からアイディアを出すことで、次々と新たな発見につなげることができます。 チームの強みは何? デザイン思考は、チームワークを前提とした技法です。メンバー各々の背景や立場を組み合わせることで、より豊かな発想が生まれます。アイディア出しの過程では、まず否定せずに視覚化(付箋などに書き留めるなど)することで、それぞれの意見を基に新たなアイディアを創出していくことが重要です。 解決策はどう絞る? ダブルダイヤモンドのプロセス―問題の洗い出し、問題の絞り込み、解決策の洗い出し、そして解決策の絞り込み―を何度も繰り返すことで、解決策の精度を高めることができる点も大変魅力的です。 実務で何を実現する? 実務面では、高校現場の指導実態を把握し、現状の課題を解消するための商品改定や新たなサービスの立案が求められています。来年度からは、入試指導を中心としたプロジェクトに参画し、営業側と商品側が混在する中で、事務局としてチームの取りまとめ役を担う予定です。発散と収束のタイミングをチーム全体でしっかり共有しながら、デザイン思考の考え方を実務に活かしていきたいと考えています。 学びをどう活かす? 今回の学びを通して、デザイン思考や価値設計の基本概念、そしてダブルダイヤモンドの手法の理解が深まりました。これらの考え方を実務で具体的に応用するため、チーム全体で意識を高めながら、柔軟かつ具体的なアクションプランを策定していく所存です。

戦略思考入門

経済性で実感する現場の知恵

固定費削減の秘訣は? 固定費削減の方策として、規模の経済性、習熟効果、範囲の経済性という三つの概念を学びました。それぞれの考え方が、企業活動の異なる側面においてコスト低減に寄与する点が印象的でした。 規模の経済性をどう考える? まず、規模の経済性は、特定の製品における固定費の削減に有効ですが、メーカーの場合は生産設備の稼働率にも注意が必要です。例えば、汎用品のように大量生産が求められる製品に適している一方、当社では少量生産で高機能な材料の開発を目指しているため、その効果はある程度に留まると考えています。 習熟効果はどう活かす? 次に、習熟効果については、生産量が増えるにつれて単位当たりのコストが下がるという現象を指します。私が関わっている化学メーカーでは、生産期間が延びることで生産技術が向上し、結果としてコスト改善につながっていると感じました。ただし、市場環境の変化、たとえば競合他社の参入や市場縮小に伴う価格競争となった場合、習熟効果による製造費用の低減が必ずしも利益に直結しない可能性もあると考えます。 範囲経済の活用はどう? また、範囲の経済性は、会社が保有する情報、顧客、技術などの資源を他事業でも活用することで、単独で行う場合よりも効率的にコストを削減できる効果です。当社では、各部署間での情報共有や人材の配置転換が進められており、個々のスキルや経験を新たな部署で活かすという点で、この理論が実践されていると感じました。しかし、一部では新たな考え方を柔軟に受け入れる一方で、個人の意見に固執する傾向もあるため、部署間の連携強化にさらなる工夫が求められているように思います。 未来戦略は何が必要? 今後は、同じ分野で新規事業を検討している他部署との情報交換を積極的に行い、範囲の経済性をより一層効果的に活用することが重要だと考えています。また、規模の経済性と習熟効果に基づいた戦略は、開発した製品の価格設定にも反映させるべきで、短期的な視点に偏らず、中長期的な販売量や価格の動向を予測した上で、適切な価格決定を行うことが大切だと感じました。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

リーダーシップ・キャリアビジョン入門

振り返りから見える成長への道

理論の変化はどう捉える? モチベーション理論は元々知識として持っていたものの、古い理論であるためか、解説によって解釈に多少のばらつきがある点に気付きました。理論自体は維持されているものの、時代に合わせた解釈への変化が印象的でした。 実践で迷う理由は? また、理論として理解していたものでも、実際に演習に取り組む際には考え込んでしまう場面があり、実践的に使いこなす必要性を強く感じました。 任せ方の境界は? 仕事の任せ方に関しては、以前経験した「やり方を握ったのにあれこれ口を出す」といったやり方が良くない例として挙げられており、想定内の状況であればそのまま任せるという判断と、必要な場合に意見を述べる線引きを意識することが大切だと改めて認識しました。 フィードバックはどう? また、提示された「モチベーションは主観である。だからこそ、寄り添うことが重要」という考えに共感し、フィードバック時にはメンバーに他の可能性を考える機会を十分に提供するよう努めたいと感じました。これまで自分から代案や最適解を提示してしまった点を反省し、今後はメンバー自身が考える場面を設けることを意識します。 直感と理論はどう比較? さらに、モチベーションに関しては、理論を頭に浮かべながら現状の分析や対策を練り、直感的な対応との違いを確認することで、より適切なアプローチを模索していきたいと思います。何よりも、過干渉にならずにメンバーの考えに耳を傾け、共感する姿勢を大切にする必要があると感じました。 毎日振り返る意味は? 日々の活動の中で、実践すべき行動が不足していると感じる瞬間があるため、毎朝この振り返りを確認し、昨日の行動と今日の目標を意識するよう心がけます。メンバーの数が限られているため、特別な実践の場を設けることなく、日常の中で継続的に取り組む考えです。 他リーダーの学びは? 最後に、他のリーダーの行動を観察し、感心する点があればその理由や自分でも実践可能な内容かを整理していくよう努め、より良いリーダーシップの実践を目指していきたいと思います。

データ・アナリティクス入門

ひも解く!受講生の生の声

仮説検証はどうすべき? 問題を特定した後、解決プロセスでは、網羅的な仮説を立てた上で条件をそろえ、比較検証を行う必要があります。同時に、データを収集しながら根拠を明確にする手法も有効です。 上司の指摘は何を示す? また、講義中に説明された内容ではありませんが、課題を進めていく中で思い出した上司の指摘が印象に残っています。上司は、データから状況を読み解く際、さまざまな項目を網羅することは大切ですが、事実と推測を明確に区別すべきだと述べていました。実際、読み取った情報が事実であれば仮説の妥当性を確認できますが、もし推測であれば話が大きく変わるため、この点には十分に注意が必要です。 根拠データはどう確保? 社員の要望をアンケート結果から読み解く場合は、ひとつひとつの事象に対して根拠となるデータを具体的に示すことが求められます。たとえば、「この部分からこういうことが読み取れる」といった説明が必要です。 低正答率の真因は? また、教育受講者に実施する理解度チェック問題で正答率が低かった場合には、単に「理解不足だから」と結論付けるのではなく、問題解決プロセスを分解して検討することが重要です。具体的には、社内教育における教材とチェック問題の内容の齟齬、チェック問題自体の意図が上手く伝わらなかった可能性、あるいは回答者側の問題(例:注意不足)など、課題が生じたプロセスを一つひとつ切り分けて検証する必要があります。 ヒヤリハットの要因は? さらに、6月からは昨年度まとめたヒヤリハットに関するデータの分析が開始されます。ここでは、会計処理中に「冷やっとした」や「ハッとした」といったミスにつながりかねない状況を取りまとめています。データ項目の数や回答レベルが一定でないため仮説を立てるのは難しいですが、ロジックツリーを活用して全体を網羅的に整理し、what(何が)、where(どこで)、why(なぜ)、how(どのように)という観点から現状を整理し、考えの根拠を丁寧に示しながら、最終的にはhowの提案に結びつけていく方針です。

リーダーシップ・キャリアビジョン入門

本音と内省で描く未来キャリア

将来像は何が不安? 現在、将来像が明確でなく漠然とした不安を抱えている中、今週の講義を特に楽しみにしていました。今回の学びから、特に以下の二点が印象に残りました。 会社選びはどう変わる? まず一つ目は、会社と自分自身のマッチングの重要性です。これまで自分は「やりたいこと」といった個人的な意志に重きを置いていましたが、組織に所属する以上、「自分が働く場所でどのような課題に向き合い、どんな貢献をしていくか」という視点が必要だと痛感しました。また、キャリア形成においては、自身の内面にある正直な思い(本音)と、組織に合わせた表現(建前)をうまく使い分けることが鍵となると感じました。本音では、業務内容への希望や転勤の希望など、素直な気持ちを見つめ直し、建前ではそれを組織の文脈に沿って表現することで、より実現可能なキャリアプランが描けると思います。 内面との対話は? 二つ目は、自身の内面に向き合うことの大切さです。内面と向き合い、自分の価値観や仕事に対するこだわりを明確にしている上司は、自然にリーダーシップを発揮されていると感じました。自分自身も、これまで内面への向き合いが十分でなかったと反省し、今後は内省を通して、明確なキャリアビジョンを築いていく必要性を実感しました。 視点を整理するには? これらの視点は、今後の取り組みにも活かしたいと考えています。一つ目は、定期的な内省を通じて自分の本音や価値観を整理し、段階的に中長期のキャリア像を固めることです。週次、月次、四半期ごとに自分の感情や考え方の変化を振り返ることで、より具体的な将来像を描いていきたいと思います。 面談の意味は何? もう一つは、上司との定期面談を活用することです。次回の面談の際には、自身の中長期的な将来像を言語化し、組織の課題意識と自分のやりたいことを融合させた形で話を進め、上司からのサポートを得たいと考えています。 知見をどう活かす? この講義で得た知見を活かして、キャリア迷子の状態から脱却し、より明確なキャリアプランを築けるよう努力していきたいと思います。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

戦略思考入門

選択肢を絞る重要性を再認識

選択と集中、どう活かす? 「選択と集中」という言葉を聞くと、私たちはしばしば「最適な方法を選ぶ」ことだけに注目しがちです。しかし、選択肢が多ければ多いほど、最適な方法の選出にも多くの時間がかかってしまいます。そこでまずは不要なものを省き、選択肢を絞り、その道筋をよりクリアにすることが重要だと再認識しました。 無意識の選択能力を仕事にどう活かす? とはいえ、これは日常生活でも常に実践していることではないでしょうか。例えば、飲食店でメニューを眺めるとき、最初に決定するのは食べたくないものを避けることです。このような無意識の選択能力を仕事に活かせば、選択肢を減らしフォーカスすることは比較的容易なはずです。 組織での無駄をどう排除する? しかし、現実には、慣習や惰性で続けている業務が多く存在します。一人で行っている業務ならば整理もしやすいですが、組織全体となると意見が衝突し、事なかれ主義に陥ることも少なくありません。定期的に見直しを行う仕組みが必要だと感じました。動画で紹介されたように、新参者の意見を反映させるのも一つの手段です。 私自身、現在の部署に移ってから1年が経ちますが、慣習や忖度で行われている業務に対して、批評的な意見を述べる立場にあります。限られたリソースを最大限有効活用するため、無駄を排し、経営効率の改善を図ることが求められています。 目的達成のための共有は必要? しかし、忘れてはならないのは、無駄を省くことが目的ではないということです。これは、事業や組織として目標を達成するための手段に過ぎないのです。目的の明確化が重要です。既存のやり方や業務、取引など、良いものも当然ありますが、多くは思考停止状態で繰り返されています。それが「仕事」として共通認識になり、無駄に時間を埋めてしまうのです。 目的の共有を頻繁に行い、組織全体の方向性を合わせることが重要です。そうすることで、「捨てる」も「選択」も個々の意見や主張に偏らず、共通の判断が下せるようになります。目的達成のために、不要なものを捨てるという共通認識を持つことが必要です。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

「重要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right