アカウンティング入門

思考の枠を超える、新たな発見の旅

思考の枠を越える体験とは? ナノ単科の受講を通じて、自分がいかに思考の枠にとらわれていたかを痛感しました。これまでは、目先の業務に追われて新しい発想や視点を取り入れる余裕がありませんでした。しかし、この講座では様々なケーススタディを通じて、異なる業界の成功事例や戦略に触れることができました。 視点を変えると何が見える? 特に印象深かったのは、視点を変えるだけで見える世界が大きく広がるということです。実際に、自社の取り組みを再評価する際に、これまでは気付かなかった改善の余地や新たな機会を見つけることができました。また、他の受講生との意見交換を通じて、異なる観点からのフィードバックを得ることができたことも、この講座の大きな収穫でした。 学んだことをどう活かす? さらに、講師の指導が非常に具体的で明確だったため、学んだ内容をすぐに実務に活かすことができました。理論だけでなく、実践的なノウハウを学ぶことで、自分のスキルアップを実感しています。 経験がもたらした自己成長 この経験を通じて、自己成長の重要性を改めて認識し、今後も継続的に学び続けていきたいと強く感じました。ナノ単科は、単なる知識の習得にとどまらず、実際の業務での活用を考える上でも非常に有益なプログラムです。

マーケティング入門

ビジネス成功の鍵を握る顧客ニーズの把握術

顧客のニーズを把握する方法は? 「何を売るか」について非常に面白い講義だったと思う。顧客の潜在的あるいは真のニーズを売る側が事前に把握し、具体的に提示することが、多様なサービスにおいても活用できると感じた。例えば、スーツの事例において、コロナ禍での必需品であるマスクを早めに市場に投入したことが、顧客のニーズに合致して成功に繋がったのではないかと考える。また、私自身ビジネスを進める上で、事前のヒアリングを通じて必要な情報を収集し、顧客や潜在顧客に合った商品やサービスを提供することが、顧客満足度の向上に寄与すると感じている。 業務改善で考えるべきことは? 社内の業務改善の観点から見ても、医療や介護業界ではDX化が遅れている。しかし、顧客や従業員にとって無駄な業務を減らし、効率的に業務に専念できるようにすることは、ペインポイントの解消に繋がるのではないかと考える。 自分の強みをどう活かす? また、業務効率化を年単位で行っているが、できれば四半期ごとに各部署の管理職と議論し、より良いサービスの提供に専念できるようにスタッフへのヒアリングを強化したい。そして、自分自身の強みを整理し、世の中に貢献できるサービスを見つけ、将来的な起業の指針として知識を活用していきたいと考えている。

クリティカルシンキング入門

軸を変える!データの新発見

最初のLIVE講座の印象は? クリティカルシンキングの総まとめの週では、最初のLIVE講座で「自分の思考の癖を知る」というテーマが特に印象に残りました。その後のLIVE講座では、week1~5で学んだ知識を活かしながら、2つの問題に取り組み、その中で数字の並びを見ると細部に過度に意識が向いてしまう自分の癖に気づかされました。そこで、まず問題全体を把握し、数値を見える化する、軸を変えて視点を変えるといった手法を段階的に取り入れることの大切さを実感させられました。 数字分析はどう進む? さらに、数字の羅列や傾向を分析する際、現実の業務の中でも工数の見直しやシステムの性能分析などが必要になる状況を思い起こしました。今回学んだデータ分析のツールを活用すれば、初めに考えすぎず、さまざまな角度からデータの整理と視覚化を行い、その上で仮説を立て補足説明を探すという実践的なアプローチが可能だと感じました。 どのデータ視覚化? 今後は、単に収集したデータに基づいて行動するのではなく、まずはデータを多角的に分類し、視覚化する作業を徹底して行います。そして、その中から得られる示唆をたくさん書き出し、グループ化や抽象化を通じて整理し、自分の視点をさらに深める検討を進めていきたいと思います。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

戦略思考入門

戦略フレームワークで広がる視野の旅

どのフレームワークを使う? 戦略を考える際には、3C、PEST、SWOT、バリューチェーンを用いることが、有効であると感じました。特に、チームで取り組むときには、それぞれのメンバーの主張の背景を理解し、共通の前提や目標を定めることが重要です。また、タスクを分担することにはリスクも伴うことに注意が必要です。 戦略の課題は? 印象に残ったのは、分析自体は知っていたり、部分的に活用した経験もあったものの、しっかりと戦略にまで落とし込めていないと感じた点です。理由としては、戦略に取り組む時間を十分に確保できていないことや、適切な対策を引き出すための知識が不足していることが挙げられます。これを改善するためには、まず思考する時間を確保すること、そして日常的に成功事例を蓄積することを心掛けたいと思います。 視野をどう広げる? また、今回学んだフレームワークを使い、自分の担当しているサービスや所属する部門、さらには会社全体といったさまざまな観点から考えてみることが、自分の視野を広げる良い練習になると感じました。まずは、現在の担当のレベルで、今回紹介された4つの分析を実施し、その結果をもとに気付きをまとめ、フレームワーク活用の際の注意点も振り返られるようにしたいと考えています。

データ・アナリティクス入門

問題解決の新たな視点!変数分解の有効性

問題解決に必要な視点とは? 問題を解決しようと考えるとき、解決策から始めがちですが、「そもそも問題が何なのか?」や「それを問題と捉えることが正しいのか?」という点から考えることが大切だと思います。MECEに分解する際、これまでは層別分解に頼りがちでしたが、今後は変数分解の観点も意識していきたいと感じました。 日々の業務での手法活用法 日々の業務は「問題を特定して解決していくこと」の連続です。そのため、この手法は様々な場面で活用できると感じました。短期的な業務では、毎月の売上向上や自社サービスの利用率向上のための課題や解決策を考える際に役立ちます。また、長期的な視点でビジョンやミッションの実現を考える際にも、このフレームワークは効果的だと感じます。 効果的に習慣化する方法は? 問題に直面した際には、「1.『What』『Where』『Why』『How』の順番で考えること」と「2. MECEに分解(層別分解と変数分解)」を意識せずとも実践できるように、日々見返すメモに記載するなどして、記憶に刷り込んでいきたいです。また、チームメンバーにも学んだことを伝え、自分が意識できていないときもメンバーが意識できるようにすることで、チームとして実践できるようになりたいと考えています。

データ・アナリティクス入門

複眼で見る仮説の世界

仮説の重要性は? 学習前は、仮説を立てることに対して、恣意的または無意識に寄せたデータを収集してしまうのではないかという懸念がありました。しかし、今週の学習で、複数の仮説を立てることの重要性を理解できました。仮説はある程度の網羅性を持つべきであり、3Cや4Pといったフレームワークがその考え方を支えていることに納得しました。 仮説と行動の速さは? また、仮説を立てることが物事のスピードに直結するという新たな視点も得られました。これまで、仮説が誤っていた場合はすべてをやり直すゼロスタートになると思い込んでいたのは、仮説を決め打ちにして一つだけ持っていたからだと、自分の在り方から理解しました。 多様性と仮説の関係は? 担当しているダイバーシティ推進の取り組みにおいて、複数の仮説を活用することは、多様な在り方に対する効果的な施策の切り口が一つではないことと合致すると感じます。一方で、大きな方向性や目的の核がなければ、アイディアが散らばってしまうため、その点は常に意識しておきたいと思います。 検証の進め方はどう? 仮説の検証過程では、恣意的な判断を防ぐためにフレームワークに立ち返り、複数の仮説について必ず他者と対話し第三者の視点も取り入れるよう努めています。

データ・アナリティクス入門

論理で拓く未来への一歩

現在の状況はどう評価? 問題解決には、まず最初に現在の状況と理想とのギャップ、つまり「あるべき姿」と「現状」の差を明確にすることが必要です。このギャップは、分析の際に数値化することで、問題の規模や深刻度が具体的に把握できます。 問題発生の場所は? 次に、問題が具体的にどこで発生しているのかを検証します。問題を細かい要素に分け、見なくてもよい部分を除外することで、焦点を絞りやすくなります。 原因は何だろう? その後、なぜ問題が発生しているのか、その根本原因を徹底的に分析します。そして、最後のステップとして、どのように解決策を実行していくかを具体的に考えます。ここでは、ロジックツリーやMECEの考え方を活用することで、多角的な視点から検討し、説得力のある解決策をまとめることができます。 解決策はどこから? この問題解決の手法は、売上の予算と実績の差異を説明し、対策を検討する際に非常に有効です。問題解決のステップを意識することで、効率よく課題に取り組むことができると感じています。また、これまであまり活用してこなかったロジックツリーやMECEの手法も、論理的な考え方を鍛えるために必要であり、簡単な分析にも応用することで、次第に使いこなせるようになりたいと思います。

マーケティング入門

戦略で勝つ!実践マーケの秘訣

商品の価値はどう見る? 新商品の導入にあたっては、その商品の価値自体に加え、利用する状況や場面に潜むニーズも合わせて検討が必要です。イノベーションの普及要件として考えるべき5つのフレームワークの中で、特に可視性や比較優位性がどのように発揮されるかが大きなポイントとなります。 マーケティングとは何? また、セグメンテーションとターゲティングの観点からは、従来の3Cの知識に加え、経営資源の効率的な活用も求められます。マーケティングの基本は、顧客のニーズを正確に把握することであると再認識させられました。 SNS投稿は見直す? この学びを活かし、SNSでの投稿内容の見直しに取り組むことが重要です。可視性と比較優位性を意識した文言の選択やフィードの作成を行い、訴求力の高いコンテンツへとブラッシュアップする必要があります。 ターゲットはどう決める? 更に、ターゲットの絞り込みについては、年齢や地域、性別、思考性だけでなく、ユーザーの状況や環境といった面も考慮し、3種類ほどのペルソナに分類するなど、より具体的なターゲット設定を目指します。 施策で何が変わる? これらの施策が、新商品の魅力を正しく伝え、顧客の興味を引くマーケティング活動へとつながると考えています。

データ・アナリティクス入門

ひたむき仮説で未来を創る

仮説設定の意義は? 講座を受講して、データ分析のテクニックを学ぶことができました。しかし、分析そのものはAIに任せることが可能であり、本当に人間に必要とされるのは、データ分析の目的を明確にし、適切な仮説を設定する能力だと実感しました。正解に飛びついてしまいがちな思考停止の傾向を反省し、より良い仮説を見出すために、あきらめずトライ&エラーを重ねていきたいと考えています。また、当たり前を疑う力や、本質的な課題を見極める力、さらには分類のスキルを養うことの重要性も感じました。これらは次週以降や実践の場で活用していきたいと思います。 内部監査の視点はどう? 私は内部監査を担当しており、より鋭く価値ある提案ができるよう、今後はさらに良い仮説を立てる努力を重ねるつもりです。自分の考えや視点の狭さに日々反省しながら、「この事実から何が言えるのか」という問いに徹底して向き合っています。 現場改善はどうする? また、狭い視点に陥らないために、マネジメント視点やクリティカルシンキングを意識するとともに、現場の状況を十分に踏まえた提案ができるよう努めています。具体的には、何が問題なのか、どうすれば現場が改善されるのかをデータを裏付けに、しっかりと整理して提案していきたいと考えています。

データ・アナリティクス入門

初挑戦A/Bテストで効果実感!

A/Bテストの魅力は? A/Bテストについて初めて知り、その有用性を実感しました。特にキャンペーンやPR施策の効果検証において、どの広告媒体が最も有効か、施策の目的を達成できるかを検証するのに非常に役立つと感じました。目的と仮説を明確にすることが重要であると同時に、関係者間で共通認識を持つ機会にもなると学びました。また、季節や傾向の変動を避けるため、同時期に実施することや、1要素ずつテストすることが必須であると理解しました。 広告パターンの効果は? シンプルで運用しやすく、低コストでリスクも少ないA/Bテストは、現在実施中の交通系ICカードを活用した各種キャンペーンのPR施策に早速活用したいと考えています。具体的には、広告内容を3パターン程度用意し、どのパターンが利用者に最も訴求するのか、現状とテスト後のクリック数を確認して効果を見極めたいと思います。 投稿時間はどう検証? また、広告を投稿する時間帯についても現状はほぼ午前に固定しているため、午後に投稿した場合のクリック数や、電子マネー決済金額の変化などを検証したいと考えています。さらに、ターゲットを絞り、例えば会社帰りの会社員を意識して午後(夕方)の投稿に変更するなど、仮説を立てた上で効果検証を進める予定です。

データ・アナリティクス入門

仮説思考で未来を切り拓く

思考はどう深まる? 毎回、自分の思考が浅く、もっと広い視野を持つ必要性を痛感しています。かつて学んだ3Cや4Pのフレームワークは、今回は思うように活用できませんでしたが、仮説思考はデータ分析に限らず、経営戦略やマーケティングなど、様々な分野で常に求められる大切なスキルだと感じています。 偏りをどう避ける? また、データ分析において外部データを活用する際は、あらかじめ結論を決めて自分に都合の良いデータだけに偏らないよう、常に注意する必要があります。複数の仮説を立て、網羅的な視点を持つことが求められる一方で、これまでの自分の取り組みには網羅性が不足していたのではないかと感じています。今後、販売戦略や方針策定の際には、網羅性やデータの客観性・妥当性、すなわち根拠の質を向上させることで、提案の説得力を高めていきたいと思います。 結果の根拠は? データ分析にあたっては、まず仮説の網羅性を重視し、文字や図表などを用いて過不足を冷静に判断できるよう努めます。こうした仮説思考は問題解決の場面で非常に有用であり、社内でのディスカッションにも積極的に活かしていきたいと考えています。また、データ分析結果をアウトプットする際は、その目的や使用したデータの根拠を明確に示すことを心がけます。
AIコーチング導線バナー

「活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right