データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

データ・アナリティクス入門

4Wで解く数字の真実

どんなゴールを目指す? 定量的なゴール設定が重要であり、何を分析するかについても決め打ちするのではなく、Who、What、Where、Whyといった4Wを活用して検討することが有効です。 視野のズレを感じた? これまで、自身が「これだ」と感じたデータ分析に取り組んだ際、上長との視点の違いが生じたことや、部下への指示の際にも同様の問題が見受けられた経験があります。 数値分析の進め方は? 現在進行中の案件はありませんが、今後商材別の売上比較を行う際には、アクセス数、転換率、客単価などの各要素を因数分解する手法が効果的だと考えます。また、アクセス数についても広告、自然流入、SNSなど、媒体ごとに分類することでより具体的な分析が可能になるでしょう。 顧客分析はどう活かす? さらに、新たなプロジェクトが始動する際には、顧客理解を深める目的で、売上、アクセス数、転換率、客単価といった要素の詳細な分析に取り組み、アクセス数をもたらす各媒体の数値も明確にすることで、現状を正確に把握できるようにしていきたいと思います。

データ・アナリティクス入門

論理で切り開く学びの4つの道

どんな順番で進む? ロジック重視のアプローチとして、まずはWhat・Where・Why・Howの順に段階的に思考を進めることが基本となります。最初に「What」で、例えば売上が前年比で10%減少しているといった事実を明確にし、次に「Where」でどの地域や商品カテゴリでその現象が発生しているのかを特定します。 改善の秘訣は何? 続いて「Why」で、来店数の減少やリピーター率の低下といった具体的な要因を洗い出し、最後に「How」で、どのように改善策を実施していくかを検討します。この際、要因や改善策を「顧客側の要因」「商品力の要因」「販売手法の要因」など重複なく漏れなく整理するため、MECEの視点が重要となります。 成果はどう生まれる? このプロセスは、感覚に頼らず事実に基づいた論理的なアプローチを実現し、問題解決に向けた具体策を確実に策定するためのものです。分析結果は定期的に共有し、周囲と認識を一致させながら、仮説→検証→実施→再検証のサイクルを迅速に回していくことで、持続的な成果の創出を目指します。

クリティカルシンキング入門

データ分析で効果的な戦略を探るコツ

課題をどう掘り下げる? 根本的な課題を明らかにしなければ、一時的な対処で終わってしまい、効果的な対策が難しくなります。そのためには、データを活用し、データの切り分けにも注意を払って、直面する現状を把握することが重要です。原因を追及し、適切に根本的な課題を特定できれば、効果的な対策を考えることが可能です。 売上課題を探る? 売上の分析においてもデータ活用が求められます。次にどういったターゲットを狙って売上を拡大していくのか、現在の課題は何かを探るために利用します。売上を顧客グループごとに切り分けることで、顧客数に課題があるのか、あるいは顧客単価に問題があるのかを特定し、それに応じた戦略を立てることが重要です。 戦略と安全はどう? どのように売上を伸ばしていくのか、どのような対策をとるのかについては、自己分析による提案が求められます。また、ITセキュリティのトラブルが発生した際にも、問題の所在を一つ一つ切り分けて確認します。特に、複雑に絡み合ったケースであっても、それを混ぜて考えないようにすることが重要です。

データ・アナリティクス入門

問題を整理して解決する!ロジックツリー活用術

分解手法の魅力は? 要素を細かく分解する手法が印象に残りました。単に「売上不足」と捉えるのではなく、生徒数と単価という視点で分解し、売上を構成する要素をロジックツリーで整理、さらにMECEの考え方に沿って網羅的に分類する点が非常に整理され、有用であると感じました。 来期計画にどう活かす? ちょうど来期の計画策定中で、中期経営計画と現状との差を埋める方法を検討する際に、この考え方が大いに役立ちそうです。未達の原因をロジックツリーに基づいて分解し、それぞれに対して具体的に不足している要素や達成するための手段を考えるアプローチを取り入れたいと思います。 整理方法は本当に? また、問題をロジックツリーで整理し、MECEの視点で確認する方法も非常に効果的だと感じました。例えば、ある分野の実績不足について、売上を契約単価と契約数に分け、契約単価は物件価格やリース料率、契約数は営業の人数や営業一人あたりの契約件数に細分化して検討することで、各項目における課題や解決策を明確にできるという点が特に参考になりました。

アカウンティング入門

PLを攻略して見えてきた経営の未来

事業内容とPLの関係は? 事業内容によって損益計算書(PL)の内容は大きく変わることを理解しました。PLを自分で読み解けるようになると、さまざまな組織の理解が飛躍的に向上するのだろうと考えると、非常にワクワクします。売上原価や販管費といった要素が絡み合って売上総利益が決まりますが、その背後には経営者の考えや想いが反映されていることを学びました。 利益体質はどう診る? 普段からPLをじっくりと見ていますが、利益が出にくい状況の中で要因分析を行う際、ここで得た知識を実務に役立てたいと考えています。会社の利益体質を改善するため、組織拡大に伴って膨らみがちな販管費をいかに抑え、効率よく投資に回すかを真剣に考えていきたいです。 実行案はどう提示? 具体的には、毎月の取締役会までにより精度の高い予実の分析結果を提示すること、また臆することなく改革案を経営層に提案することが求められます。そして、PLを読み解く力を向上させるため、会計の知識を増やし、他社のPLも参照して知見を深めていくことが重要だと考えています。

マーケティング入門

ペインとゲインで変わる!売上促進の新戦略

顧客ニーズの捉え方は? 顧客の真のニーズを捉える具体的な方法を学びましたが、それにはコストや手間がかかるデプスインタビューのような方法も含まれます。したがって、状況に応じて多様な手法を用意しておくことが重要であると認識しました。 ペインとゲインの重要性を考える これまで、自社商品のニーズについて考える機会は多くありましたが、ペインポイントについて考えることはあまりありませんでした。商品が抱えるペインポイントと、提供する価値であるゲインポイントを言語化することで、新しい販売施策のアイデアが生まれる可能性があります。また、それは広告や宣伝においても、新たな視点から消費者に訴求するメッセージを出せるようになるだろうと感じました。 次のステップは何にする? 今後のアクションとして、自社商品のペインポイントとゲインポイントをすべて書き出し、部署のメンバーからフィードバックをもらって完成させていきます。そのアウトプットを基に、最低でも一つの販売施策のアイディアを考え、具体化するための行動を始めるつもりです。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

アカウンティング入門

経営指標を活用した成功戦略構築法

売上と利益、見極め方は? 売上高、売上原価、営業利益の構造について、単に売上高が高いというだけでは経営状況を正確に判断するのは難しいと考えています。同様に、売上原価をただ低くするだけでは必ずしも売り上げが伸びるわけではありません。企業の経営戦略と資源配分を意識した仕組みをいかに考えるかが重要だと思います。 競合と比較、どう分析する? 競合企業の構造を理解するためには、複数の企業を横並びで比較し、背景にある状況を仮説を立てながら組み立てることに取り組んでいきたいと考えています。また、異業種を参照し、自企業との比較を行うことで、何が高コストの原因となっているかを特定することが可能です。これにより、より精度の高い分析が可能になると思います。 自動車業界の魅力は? 例えば、自動車メーカーの比較を行う予定です。各企業がどの領域に注力しているのかを分析することで、売上高、原価、営業利益の構造を理解したいと考えています。特に、本業以外の取り組みによる差別化要素があるかどうかも確認したいと思っています。

戦略思考入門

新たな視点で探る優先順位の極意

どれを先にすべき? 普段の業務では、仕事に取りかかる際、優先順位をあまり意識せずに進めていると感じていました。しかし、今回学んだ「何を優先し、何を後回しにするかを判断する」という考え方は、実際に製品を売り出すときなど、日常業務でもよく遭遇する状況だと気づかされました。たとえば、売上高、利益率、顧客のリピート率、製造にかかる時間といった要素を基に、どれを優先すべきかを判断することが求められます。 どの基準で決定? 業務においては、売場に商品を揃える際、どの基準を用いてタスクの優先順位を決定するかについて検討し、最適な方法を見出していきたいと感じています。また、その決定基準をチーム全体で共有することによって、仕事の効率を向上させることができると考えています。 チームでどう話し合う? さらに、チームメンバーとも優先順位の基準について話し合い、共通の考え方を持つことで、より効果的に業務を進められる環境を作りたいと思います。実際に方法を試し、結果を検証しながら最適な手法を確立していきたいと考えています。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

「売上」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right