クリティカルシンキング入門

データを解剖して見えた営業の新展開

数字の活用法は? 数字を味方にするためには、分解して解像度を上げることが重要です。数字をうまく利用することで、問題箇所を特定しやすくなります。迷った時には、とにかく手を動かすことが肝心です。 データ加工の工夫は? まず、数字の加工に関しては、与えられたデータをそのまま使用するのではなく、自分で追加の欄を設ける工夫が必要です。仮説を持ち、どの単位で分解すると有益かを考えることがポイントです。 切り口はどう考える? 数字を分解する際の留意点としては、切り口をMECE(Mutually Exclusive, Collectively Exhaustive)で考えることが挙げられます。一つの傾向が見えても複数の切り口で他に傾向がないか探すことが重要です。傾向が見えなくても、それはそれで意味があります。 強みと弱みは? 営業成績の振り返りにおいては、担当者の強みや弱みを把握すること、代理店内の強みや弱みも同様に把握することが肝要です。また、品質に関しても同様に、担当者や代理店の強みと弱みを理解することが求められます。 業務分担と数値は? 業務適正化には、月間スケジュールと週間スケジュールの策定、および業務の分担が含まれます。さらに、営業成績の振り返りでは、まずは活用していた数字が正しかったかの確認から始め、決まった期間で得られる数値を把握し、分解する項目を決定。そして、その項目をルーティンで確認することが重要です。 品質分析はどう? 品質の振り返りにおいては、定められた数値に対して新しい切り口を模索するために時間をかけることが求められます。業務適正化では、現状の分析と必要業務の確認が中心となります。

クリティカルシンキング入門

実践力を磨く!総合演習と思考法の活用術

総合演習の意義は? 総合演習の授業では、これまで学んだフレームワークやテクニックを活用することができました。この総合演習は非常に良い練習問題であり、こうしたケーススタディを繰り返し行うことで、実践的な力を身につけられるという期待が持てました。 講座の成果は? クリティカルシンキング講座を受講したことで、思考の基盤をしっかりと強化し、業務にその考え方を取り入れることができました。具体的には、相手の立場や状況を考慮しながら資料を作成したり、情報を正確かつ伝わりやすくするための工夫を行いました。この講座を受講した後、周囲から「わかりやすい」「洗練された」と評価されることが増え、自身の成長を感じています。 学びはどう生かす? 総合演習やクリティカルシンキング講座で学んだことが実務に活かされ、成長を実感できたことは素晴らしい成果だと感じています。今後は、具体例を用いてどのように学んだ内容を日常で活用しているのかを詳しく説明することで、学習の効果をより明確にしたいと考えています。 イベントは振り返る? また、担当したイベントについても振り返りを行い、次回に向けた申し送りを検討する予定です。これと同時に、今年の総括と来年度に向けた実行計画の立案、営業場面での顧客の本質的な課題を捉えた提案活動にも取り組んでいきたいと考えています。 今後の実行計画は? 解決に向けた道筋を立てる際には、ピラミッドストラクチャーやマインドマップ、MECEなどのフレームワークを活用し、まずは目的を確認することから始めたいと思います。これまでの講義を再度振り返り、高いモチベーションを維持しながら次の学習計画を練るつもりです。

データ・アナリティクス入門

仮説から行動へ!解決の近道

問題分析はどうする? 実際のビジネスでは、問題の要因が複雑に絡み合っており、「正しい」原因の究明はほぼ不可能です。そのため、原因の目星が立った段階で早急に対策を試してみることで、解決に近づけると感じました。データ収集と分析は重要ですが、what、where、whyがある程度把握できた時点で、howのアクションを起こしながら問題の原因を探ることが大切だと思います。こうしたアプローチの中で、A/Bテストは特に有用です。 仮説検討のコツは? また、原因の仮説を考える際には「対概念」を活用することが効果的であると感じました。問題に関連しそうな要素をリストアップするだけでなく、それ以外の視点にも目を向けることで、思考の幅を広げ、戦略全体の問題点やその他の要因を整理することが可能になります。 迅速な対策は? この「Howを試しながら問題の原因を探る」考え方は、変化の激しい現代の業務において非常に有効です。たとえば、定期的に行われるストレスチェックで高ストレス者が多い組織があった場合、原因を探り続けていると年度交代や組織変更で状況が一変してしまう恐れがあります。したがって、原因がある程度見えてきた段階で素早く打ち手を実行し、問題解決に向けたスピード感を持つことが求められます。 データ準備は万全? さらに、現在担当している業務において問題解決の4ステップを進める際には、どのようなデータが必要かをあらかじめリスト化しておくことが重要です。必要なデータがすぐに揃わない状況では、検証に時間がかかり、迅速な対応を妨げる可能性があります。事前に想定して準備を整え、howの実行に至るまでをスムーズに行いたいと考えています。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

リーダーシップ・キャリアビジョン入門

小さな問いが生む大きな気づき

どう対処すべきですか? 実行・振り返りの際、過干渉は避けるべきとの考えから、状況に合わせたアプローチが重要だと感じました。特に、拠点が離れている職場環境においては、無理に関与しすぎず、メンバーの状態に応じた適切な対応が求められると実感しました。 会議で何を問いかける? 実際のミーティングでは、問いかけの方法を工夫して、メンバー自身から振り返りや気づきを引き出すことに取り組んでみました。短い時間の中でも、問いかけ方の違いによって相手が話す量が変化し、各人の状況をより深く理解する貴重な体験ができました。 なぜ動機は違うの? また、モチベーションのスイッチは一人ひとり異なると強く感じました。部署を離れて別のリーダーが担当している場合でも、各メンバーが前向きに取り組むためには、現在のモチベーションや働く動機をしっかり把握することが必要だと考えています。今後の評価会議に向け、各自の動機について丁寧に探っていきたいと思います。 どう実践効果を出す? さらに、WEEK3で学んだ質問力を活かしながら、PDCAサイクルやOODAループの実践を通じて、効果的なフィードバックを行う取り組みを継続していくつもりです。リーダー同士の協力や観察を通じ、メンバー一人ひとりの働く動機を深く理解することで、より良い対話が実現できると確信しています。 どの改善策が有効でしょうか? 最後に、業務における実践の中で感じた難しさや気づきを、毎週のミーティングや1on1での対話に反映させ、さらに業務委託先で決まった課題改善策の取り組みを通じて、自身のフィードバックのあり方についても自己評価を行っていきたいと考えています。

マーケティング入門

新規事業のヒントを探る旅

顧客のペインポイントをどう探る? 顧客の「ペインポイント」が新規事業やビジネスの種になることを実感しました。また、ペインポイントを探るためのフレームワークや手法が存在することを初めて知りました。自分自身が顧客になり得るという視点を持つことも、ニーズやウォンツ、ペインポイントを探し出す仮説の一部になり得ると感じました。顧客へのフィールド調査は重要ですが、仮説をもって取り組むことで、より効果的かつ効率的に進められるのではないかと思います。一方で、バイアスが困難を引き起こすことがある点も注意しなければなりません。 IT企業の将来展望は? 私の会社はシステム開発を手掛けるIT企業で、主にB2Bをビジネスとしていますが、将来的にはB2Cの視点も求められるのではないかと感じます。大型システム開発が減少し、SaaS形式のサービスが主流となる中で、既存のビジネスに固執することは衰退を意味します。お客様の業務において、まだ気づかれていない課題や問題、不便さを見つけ出し、それに対するサービス提供を行う能力が必要です。経営企画として事業戦略を策定する際には、マーケティングの観点を取り入れていきたいと考えています。 マーケティングの現場重視の取り組みは? マーケティングはフレームワークや手法が発展した領域ですが、お客様のニーズやウォンツは現場にあると考えています。会議室やオフィスでの議論だけでなく、実際の現場を確認する意識でマーケティングに取り組みたいです。顧客訪問ができない場合は、現場担当者との密なコミュニケーションも効果的ではないかと考えます。定期的に現場のニーズを収集できる仕組みを考えていきたいと思います。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

問題解決のプロセスで人事制度の見直しを劇的に改善した話

問題解決プロセスの課題とは? 問題解決のプロセスについては以前から学習していましたが、日々の仕事で振り返ってみると、実際には使いこなせていないことに気づきました。多くの場合、What(何をすべきか)からHow(どうやるか)に直接飛んでしまったり、Where(どこで)やWhy(なぜ)を考えながらも、しっかりと分解できずに決め打ちに走ってしまうことが多かったです。現在、私の担当業務は「問題発見・提示➡施策提案・実行」の繰り返しであるため、今後は問題解決プロセスを意識して取り組んでいこうと思います。また、層別分解と変数分解という具体的な分解方法についても、新たな気づきを得ることができました。 人事制度見直しのステップは? 現在、社内では人事制度全体の見直しを進めようとしています。その際、今回学んだ問題解決プロセスを適用することで、どこから取り組むべきかを体系的に整理できると感じました。これにより、問題の特定や施策の検討が決め打ちにならず、幅広く論理的に進められるようになります。また、全体のどの部分を考えているのかが見える化されるので、チームでの議論や社内での説明(上司への説明)もしやすくなると感じました。 具体的には、人事制度をどのように分解し、それぞれの要素ごとに現状とあるべき姿のギャップを把握します。どこに問題があり、なぜそうなっているのかの要因を特定し、その結果として施策の検討(人事制度の見直し)も決め打ちにならず、優先順位もつけやすくなります。現状では人事制度が体系的に整理されていないため、まずはこれを機に人事制度のつながりを見える化してから、見直しに着手していきたいと思います。

リーダーシップ・キャリアビジョン入門

感謝が照らす自分らしさ

キャリアアンカーって何? キャリアアンカーの重要性について学びました。人それぞれ持つ価値観は個別であり、軽率に決めつけることは危険だと感じます。 支援実感ってどう? 自分自身の経験では、コロナ禍において支援金の業務を担当しました。パソコンを使う作業であったため、同世代からは簡単な業務だと見なされがちでしたが、一方で高齢の方々から依頼が相次ぎ、報酬以外にくだものやお菓子を頂くこともありました。その際に「本当にありがとうございました」という言葉を頂いたことが非常に印象に残っています。パソコンの使い方すらわからなかった高齢者の方々に対して、支援が的確に届いた実感がありました。この経験は、社会の困りごとと自分の提供するサービスが見事にマッチした瞬間でした。そして、今回の受講を通じて、自分が大切にしてきた「感謝」の価値観を改めて考える機会となりました。 価値観をどう聞く? 面談時や1on1、個別相談では、相手の大切にしている価値観を引き出すよう努めています。まずは、会社での価値観をしっかりと聞き出し、現行の業務とのマッチ度を確認します。また、配置転換や適性の見極めも含めて、双方が納得できる形を目指しています。 許認可と展望は? さらに、相談の際には、業務上必要な許認可の取得について、なぜその業務を始めたのか、現状はどうなっているのか、そして未来の展望や必要性について、相手と共に頭の中を整理しています。相手の発言の背景を深堀したうえで、すぐには結論に至らず、さまざまなツールを活用して議論を進めたいと考えています。まずは利用可能なツールについて調べるところから始める予定です。

戦略思考入門

競合調査と持続戦略で成功する道筋

VRIOフレームワークの意義とは? VRIOフレームワークにおけるValueとRarityは、ターゲット顧客にとって意味があるか、競合との差別化につながるかに関わる。Imitabilityは施策による差別化が持続するかを考える上で有効であり、Organizationは持続可能な差別化を組織全体で実行できるかどうかの視点である。 顧客ターゲティングの手順は? Step 1. 顧客セグメンテーションに基づくターゲット顧客の特定。 Step 2. ターゲット顧客に対して競合を意識した施策がなされているかの確認。 Step 3. 実現可能性や持続可能性を意識した施策であるかどうかの評価。 業界での差別化戦略の現状は? 自身の業界では、ポーターの3つの基本戦略に基づき、自社は製品軸での集中戦略を採用していると認識した。ただし、ターゲット顧客はかなり広範であり、差別化集中の戦略を採用している。Step 1のセグメンテーションは実施済だが、Step 2の競合調査が不十分である。今後、追加調査を行い、競合との差別化とその持続性を維持するプランを策定したい。 医療分野での新商品企画にどう取り組む? 転職先での新たな業務として、医療分野や計測機器分野での新商品の企画を担当する。顧客セグメンテーションや市場規模に基づく優先順位は設定したが、Step 2の競合動向調査や技術トレンドの把握が不十分である。これが喫緊の課題であり、8月に調査を実施する予定。その後、施策案のブレストをチーム内で行い、Step 3の実現可能性や持続可能性を意識した施策の優先順位付けを9月に実施する予定である。

戦略思考入門

選ぶ勇気がもたらす効率革命

捨てるメリットは? 今週の学びのポイントは「選択(捨てる)」ということでした。経営資源は限られたものであることを再認識し、やりたいことややっておいたほうがいいことをすべて挙げていてはキリがありません。「捨てることの恐怖」より、「捨てることによるメリット」に注目して判断する必要があると学びました。 無駄処理は見直し? 私は業務の効率化を専門としている部署に所属しており、仕事の進行における無駄を排除する意識は高いと考えています。そのためある程度の精査はできています。しかし、他部署から受け継いだ業務には、まだ無駄な処理が含まれていることがあります。このため、その処理を行う目的や根拠を明確にし、それによる効果を見極めて効率化を進める必要があると感じています。 業務増加の対策は? さらに、自分自身に目を向けると、最近の役割の変化により新たな業務が増えました。しかし過去の業務も継続しながら進めているため、業務過多になる場面が増えてきました。ここでこそ「捨てる」という選択が必要だと感じます。 処理改善の意義は? オフィスで担当している業務については、引き続き無駄な処理をなくすことに注力します。移管された業務については、その目的、効果、根拠を明確にし、不要なものは論理的にその必要性を説明して、関連部署と建設的な意見交換を行う必要があります。 業務分担の工夫は? 自分自身の業務量に関しては、他のメンバーに任せられる業務については思い切って任せることを検討する必要があります。オフィスメンバーの稼働率や業務の難易度を考慮し、適性を見極めて適切に依頼していきたいと思います。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

「業務 × 担当」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right