クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

リーダーシップ・キャリアビジョン入門

リーダーシップを学び、変える力を磨く

リーダーシップの開発法は? リーダーシップは生まれつきのものではなく、後天的に開発できるという点が非常に興味深いです。また、環境要因やメンバーの適合性を見極め、状況に応じて仕事の任せ方を変える重要性についても学びました。これはパス・ゴール理論に関連しています。 メンバーへの仕事の任せ方は? 普段の業務においては、メンバーに仕事を任せる際に活用できそうです。例えば、新入社員に対しては物事の背景や目的をしっかりと伝えた上で、具体的な手順まで指示して仕事を任せることが効果的です。一方で、ある程度の経験や知識を持つメンバーには、タスクの目的や背景を伝えるにとどめ、実際のやり方は個々人に任せるといった柔軟な対応が求められます。 自主性を尊重する工夫とは? このように、仕事を任せる際には対象者に応じてアプローチを変えることが不可欠です。新入社員には詳細な指導を行い、経験豊富なメンバーには自主性を尊重する形で任せる工夫が重要です。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

データ・アナリティクス入門

仮説思考で変わるサポートの未来

仮説思考は何が変わる? 仮説思考を学ぶことで、業務に対する課題意識がより明確になったと感じました。単に仕事をこなすのではなく、仮説をもとにトライアンドエラーを重ねることで、目的に一歩ずつ近づけるという実感が得られました。 サポート満足の理由は? 現在の課題として、クライアントのサポートに対する満足度が低い原因は、製品の不具合ではなく、返信までに要するリアクション時間やサポートサイトの分かりにくさにあるとの仮説を立てました。この課題に対して、改善策を検討し実施していく決意です。 フィードバック改善案は? また、クライアントからのサポートフィードバックを年に一度にとどめず、より頻繁に意見をいただけるようにすることで、現状の把握と対応の質を向上させたいと考えています。問い合わせが多い項目については、サポートサイトを見直しアップデートするほか、検索しやすいキーワードの設定も改め、利用しやすい環境の整備を目指します。

データ・アナリティクス入門

現状把握で切り拓く自分の未来

考えの整理はどう? 総括すると、各工程ごとに自分の考えを丁寧に整理することの重要性を改めて感じました。「いつ」「どの業務が」「なぜ」「どのように」といった観点で整理し、その上で仮説を立て検証することで、具体的な解決策を導き出せると理解しています。 現状把握は何が鍵? まずは、現状を正確に把握することが不可欠です。具体的には、5W1Hの観点から現状を整理し、各工程を定量的に明示することが求められます。また、数字だけでなく現場へのヒアリングを通じ、データと実態に大きなズレがないかを確認していくことが重要です。 仮説検証はどう進む? 重ねて申し上げますが、現状把握を基に仮説を立て、検証するプロセスが鍵となります。仮説を検討する際には、現場担当者の感覚も反映させることで大きなズレが生じないよう確認し、データ整理は目的化せず、解決策検討のための具体的なアプローチとして行動に移す意識を大切にしたいと考えています。

クリティカルシンキング入門

データ分析の新しい視点を発見!

目的と仮説の意義は? データ分析を行う際には、目的と仮説をしっかりと持って取り組むことが大切です。そして、分析の結果に対する「それでどうなるのか?」を明確にすることを意識しましょう。MECE(モレなくダブりなく)にグルーピングした後、そのグルーピングを自分でレビューし、精度を高めることも重要です。 自己レビューの限界は? 私は日常的に分析や示唆出しを行っており、適切な粒度でグルーピングをすることの重要性を感じています。しかし、自己レビューには限界があるため、まず自分でレビューをした後に、他者からのレビューを意図的に組み込むことで、多角的な視点を得るようにしています。 レビュー導入の理由は? 分析後には、レビューを求めるプロセスを自身の業務フローに組み込んでいます。他者のレビューを得るために、締切よりも早めの段階でアウトプットを心がけています。この取り組みは、企画を伴うすべての業務に適用しています。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

クリティカルシンキング入門

問い続けて未来を変える

なぜ目的を重視する? 常に目的を意識し、自分の思考の癖を理解するとともに、問い続けることの重要性を学びました。これまでは、自身の経験則に頼り、安易な解決策に走っていた点に気付かされました。今後は、問題の本質を的確に捉える思考力を身につけたいと考えています。 組織会議はどう整理? 半期ごとに担当する組織のアクションプランを作成する際は、現状、課題、対策を論理的に整理し、より成果に直結するプラン作りを心掛けていきます。また、社内会議においても、問題の核心を正確に把握し、適切な提案ができるよう努めていきたいと思います。 なぜ毎日問いかける? さらに、日常生活においても「なぜ、何のために」という問い掛けを習慣づけ、常に深く考える姿勢を実践していきます。加えて、毎週確実にインプットの時間を確保し、学んだ知識を業務で実践するアウトプットを行い、上司や同僚からのフィードバックも受けながら成長を続けていく所存です。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

リーダーシップ・キャリアビジョン入門

自ら見つけるナノ単科の魅力

部下への伝え方はどう? 部下や後輩に組織の方針を伝える際は、伝える内容を大きく二つに分けています。一つは守ってほしい基本方針を明確に示えること、もう一つはプレッシャーをかけずに自ら答えを導けるような具体的な質問を投げかけることです。部下や後輩自身が答えを見つけ出すプロセスを促すため、なるべく自分で考えさせる工夫が大切だと考えています。 調査業務はどうする? また、社内の調査業務においては、直属の部下や後輩だけでなく、他の部署や関連会社の年齢が離れた若いメンバーにも指示を行うことがあります。その際、細かい指示は避け、大枠の目的や流れを示すことを心掛けています。限られた時間の中で、資料や言葉にまとめた基本方針を分かりやすく伝え、誰にでも理解しやすいよう努めています。そして、上司や先輩という立場でありながらも、決して偉そうな態度をとらず、すべては部下や後輩の成長を支援するためであるという姿勢を貫いています。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

「業務 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right