データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

デザイン思考入門

顧客の声で変わる営業の未来

新たな支援策とは? 営業力を支援するため、従来の販売視点ではなく、顧客のインサイトや潜在的な課題発掘に焦点をあてた営業活動のプロセスについて考察しました。まず、顧客が知りたいと思う情報提供として、営業が把握している各顧客の業務や作業の顕在課題に対し、公開情報ではたどり着かない新たな解決策を提案します。たとえば、ある企業が進めるデジタル化では、従来の方式に潜む無駄を見出すといった視点です。 解決方法に疑問は? 次に、顧客が固執している解決方法に疑問を投げかけ、従来とは別のアプローチを示すことで共感を得る試みがあります。実際の現場では、必ずしも全面的なシステム導入に固執せず、コミュニケーションの改善による生産性向上といった選択肢も提示されています。 効果はどう現れる? また、共感が得られた段階では、提案した解決策のROIなど具体的な実施効果を明確にし、実際にその方法がもたらす成果を数字や事例で示すことが求められます。その上で、解決策を自社の状況に置き換えてイメージできるよう、具体的なストーリーテリングを用い、顧客自身の課題として捉えてもらう工夫がなされています。 合意形成はどう? そして、最終的には提示した解決方法について、顧客と合意形成を図ることが重要です。この時点では自社の製品やサービス導入は必ずしも前提とせず、まずは解決策そのものへの合意が得られることが目的となります。 顧客関係の維持は? また、実践には至っていないものの、販売商品の訴求以前に、顧客との関係性を維持し、課題に寄り添う姿勢が重要であると考えます。こうした取り組みにより、営業は顧客に新たな気づきを提供できると同時に、営業自身の心理的安全性も担保されると感じます。実際、営業職はプレッシャーに強いという固定観念がある一方で、日々の業務の中で自省や試行錯誤を行っているのが現実です。 検証プロセスは? さらに、プロトタイプ作成の際には、ユーザーの本質的な課題を解決することが最も重要です。対象者が共感を失わない課題設定に基づき、実際のユーザーの声を取り入れて改善を繰り返すことで、限られたスケジュール内においても効率的な検証プロセスが実現できると感じました。

リーダーシップ・キャリアビジョン入門

社用車管理のエンパワメント成功術

エンパワメントとは何か? エンパワメントとは、メンバーが自律的に業務を遂行できるように促すリーダーシップの一つです。目標を設定して、その達成方法をメンバーの自主性に任せつつ、効果的な支援を行います。ただし、ミスが許されない仕事や納期が極端に短い仕事には向かない手法です。リーダーがメンバーをよく理解し、モチベーションやスキル、喜びを感じる要因を見極めることも重要です。人材育成という側面も忘れずに考慮する必要があります。 目標設定はなぜ重要? リーダーシップの実践における第2ステップは目標設定です。目標設定では、メンバーをそのプロセスに参加させることが重要で、問いかけを通じてメンバーの問題意識や関心を引き出し、発言を促すことでコミットメントを得ます。また、目標は具体的で定量的であるべきです。メンバーが優先順位をつけて行動しやすいような、測定可能な目標が望ましいです。その際、目標に意義を持たせることで、メンバーの使命感を引き出し、挑戦感を与えることも大切です。これはメンバーに少し高めの目標を与えることで実現します。 成果が出ない時の対処法は? しかし、目標設定をしてもメンバーがやる気を出さない場合は、それが理解不足なのか、実行不能なのか、意欲の欠如なのかを見極めて、適切な支援を行う必要があります。 総務業務に目標設定をどう活用する? 私の業務に関して言えば、総務業務における目標設定を活用できると感じています。今回は、社用車管理業務に注目します。総務の業務は組織方針において抽象的になることが多く、(例:従業員が働きやすい職場環境の改善)そのため、メンバーが業務を日常の一環と捉えてしまい、課題の改善に取り組む意欲を持ちにくいと感じています。 具体的に、25年度の社用車管理業務の目標設定を実施しようと考えています。関係するメンバーを集め、問題意識や関心点をブレインストーミングで出し合い、それを整理します。小さな問題やすぐ解決できる事案は日常業務として処理し、大きな解決策が必要なものや即座に解決策が出ないものを課題として取り上げ、目標設定を行います。目的の意義、定量的かつ具体的な内容、そして挑戦の要素を各メンバーに伝え、エンパワメントを活用します。

クリティカルシンキング入門

多角的思考で未来を拓く

思考の偏りはなぜ? 人の思考には偏りがあり、自由に発想できる状況下でも無意識に制約を設けてしまうことが多いと感じています。クリティカル・シンキングは、物事を適切な方法で、適切なレベルまで考える思考法であり、コミュニケーションや問題解決の基盤となると実感しています。 視点の整理って? 例えば、物事を見る際には「視点」「視座」「視野」という3つの切り口を用い、MECE(漏れなくダブりなく)に整理することで、思考の偏りを防ぎ、全体像を的確に捉えることが可能です。日常の問題をこうした方法で整理すれば、論点の見落としや前提の違いに気づくことができ、他者と共有しやすい形にまとめられます。 業務改善の視点は? また、業務フローの見直しの場面では、「現状に問題はない」という意見があっても、その背景や前提条件を丁寧に掘り下げることで、より効率的で本質的な改善策にたどり着けると感じています。自身の考えを伝える際にも、根拠や構造を意識して説明することで、伝わりやすさが格段に向上すると思います。 育成の多角的視点は? チームメンバーの育成においても、単に答えを示すのではなく、問いかけや多角的な視点を提供することで、メンバー自身が主体的に考えを深められるよう努めたいと考えています。物事を鵜呑みにせず、構造的かつ多面的に捉える力を身につけることで、納得感のある判断や建設的なフィードバックが可能になるでしょう。 要素分解の大切さは? 具体的には、思考を要素分解して整理する力をさらに強化する必要があると実感しています。自分が把握している範囲で要素を洗い出すことは得意ですが、偏りや盲点があるため、より幅広い観点からの検証が求められると感じています。そこで、分解する際の観点や情報の調べ方を習得することで、日々の実践力を向上させられると考えています。 生成AI活用の効果は? 直近の取り組みとしては、生成AIを活用して要素の抜け漏れがないかをチェックする運用を取り入れる予定です。業務設計の初期段階では、まず自分が洗い出した要素をAIに入力し、出てきた情報を元に再検討することで、最終的に関係者に納得してもらえる形に整理していきたいと考えています。

データ・アナリティクス入門

分解思考で掴む未来へのヒント

理想と現実の違いは? 問題定義については、常に「あるべき姿」と現実とのギャップを意識し、そのギャップを埋めるために関係者と共通認識を持つことが重要だと感じました。 分解法の違いは? ロジックツリーには、「層別分解」と「変数分解」が存在します。私自身はこれを「足し算分解」と「掛け算分解」と表現しています。加えて、感度の良い切り口を多数持っておくことも大切ですが、これが自分の長年の課題となっています。 大枠から取り組むのは? 問題分析を行う際は、まず大きな枠組みから着手することが肝要です。私は計数業務や人材育成、組織開発を担当しているため、さまざまな場面でこのアプローチを用いています。 評価の焦点は? 具体的には、売上や予算を検討する際には、分解を通じて問題の大きさや影響範囲を特定するよう努めています。また、人材育成の方法を考えるときには、何が効果的かを明確にするために要素を分解し、議論を深めています。 要因の絞り方は? さらに、組織の問題に取り組む際は、組織のありたい姿を定義した上で問題を分解し、その要因候補を絞り込む作業を重ねています。 成果物はどう捉える? また、業務のアウトプット分解についても考えさせられます。業務を成果物と、それを生み出すアクションに分解し、受け取り手の観点から何が必要かを吟味することが、業務完了に向けた重要なポイントだと感じています。 分類項目のコツは? 売上や予算の項目に関しては、適切な分類項目の設定が、事業の推進状況を的確に把握するために役立つと考えています。 育成理論を再検討? 人材育成の観点分析では、人の性質や評価の項目化は進んでいる一方で、育成方法論についてはまだまだ整理の余地があるように思います。ここでは、「When」や「Where」といった切り口で新たな項目化ができる可能性があると捉えています。 数値評価の意義は? 最後に、組織の問題分析では、定期的な組織評価の数値を基に、課題項目がどの要素や要因に分解されるのかを試行することが、今後の改善に向けた有効な戦略であると感じています。

データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。

デザイン思考入門

試作で輝く!新たな挑戦へ

初期アイデア共有は? 今週は「プロトタイプの共有とフィードバックの重要性」について学び、デザイン思考のアプローチを通して、初期段階のアイデアを素早く形にし、実際の意見を得るプロセスの大切さを実感しました。 完璧主義は危険? 学びの中では、完璧を目指さずに早めに形にすることの重要性が強調されており、完成度ばかりに固執すると、時間がかかるばかりでなく、利用者からの貴重なフィードバックを逃してしまうことに気づかされました。また、フィードバックを受ける際には、うまくいっている点と課題を整理し、改善に向けた具体的なアクションにつなげることが求められると感じました。質問の際に5W1Hを意識することで、具体的な意見を引き出しやすくなる点も印象的でした。 試作進める意義は? 自身の業務においても、まず試作を提示し、早い段階でフィードバックを得るプロセスが、プロジェクトの方向性を確認する上で有効だと再認識しました。関係者との積極的なディスカッションを進めることで、共有したアイデアの理解を深め合い、次の改善策につなげることができると感じています。 学びはどこで活かす? さらに、今回の学びは、研修設計や新規事業開発支援、コンサルティングの現場にもそのまま応用できると実感しました。研修設計では、受講者のニーズや課題を明確に把握し、試作・テストのプロセスを繰り返すことで、より実践的なシナリオを構築できます。新規事業開発においては、ターゲットとなる利用者の視点を取り入れ、素早いプロトタイピングと検証により、方向性を早期に固めることが可能です。コンサルティングでは、提案資料などを段階的に共有し、早いフィードバックを経ながら改善を重ねるアプローチが、クライアントとの合意形成を円滑に進める鍵になるでしょう。 今後の展望は? 今後は、このデザイン思考のプロセスを意識して、小さな試作とテストを重ね、得られたフィードバックを業務改善に積極的に活かしたいと考えています。試作・テストのサイクルを繰り返すことで、柔軟かつスピーディーな改善を実現し、より実践的なアプローチを定着させることが目標です。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

リーダーシップ・キャリアビジョン入門

仕事の不満解消だけじゃ満足不足?

満足と不満はなぜ? 仕事に対する満足と不満は、それぞれ異なる要因から生じることがあります。満足の反対は満足がないことであり、不満の反対は不満がないことであるという考えを持つことが重要です。したがって、不満を解消しても必ずしも満足が得られるわけではありません。 振り返りは大事? プロジェクトの進行においては、振り返りを習慣化することが大切です。そのため、スケジュールを立てる際には「振り返り」という項目を設定し、次のプロジェクトに移る前にしっかりと振り返るよう心がけましょう。この振り返りでは、良かった点と改善が必要な点の両方に目を向け、できなかったことに偏らないよう注意することが求められます。 なぜ問題が起こる? 問題が発生した際には、その場限りの解決にとどまらず、なぜそのような問題が起こったのか、構造的な原因を見極めることが重要です。それにより、今後の問題発生を未然に防ぐことができるかもしれません。 信頼構築はどう? 個人やメンバーの満足や不満に関しても、一歩引いた視点で考えることが求められます。つまり、彼らの満足や不満が特定の個人にとどまらず、組織全体の仕組みや体制作りに問題がないかを考える視点が必要です。チーム内での信頼関係を築くことが効果的な振り返りの鍵となり、メンバーとの信頼を深めるため、日頃から「信用残高」を積み上げていく努力を怠らないようにしましょう。 仕事の任せ方は? また、仕事を任せる際には「丸投げ」ではなく、「一任」となるよう配慮することが求められます。過干渉にならないよう気を付けながら、必要なフォローアップを行っていくことが大切です。 振り返りを習慣に? さらに、プロジェクトのスケジュールには振り返りの時間を各タイミングで設けることで、メンバーが振り返りをしやすくし、これを習慣化することが望ましいです。フィードバックや振り返りを行う際には、悪い点だけでなく良い点やポジティブな面についても伝えることを心がけ、自分自身の働き方や意義についても定期的に振り返ることで、自身とメンバーの両方が成長できるよう努めましょう。

データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

「関係 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right