戦略思考入門

選択と捨てる勇気で生み出す価値

戦略の選択は? 戦略における選択、つまり「捨てる」ことについて、ITベンダーの営業マンシミュレーションで学びました。個人のリソースには限りがあるため、何をやるか、何を捨てるかの優先順位を付けることが重要だと再確認しました。 判断の軸は? 惰性で業務を進めるのではなく、しっかりとした判断軸を持ち、それに基づいて考える必要があります。優先順位を付ける方法として、定量的なエビデンスに基づいた考え方に加え、ROI(投資対効果)を考慮することも大切であることを新たに認識しました。 視野を広げる? また、個人的な視点だけでは見落としがあるかもしれず、全体を俯瞰できない可能性があります。このため、集合知を活用し、他者と意見交換や相談を行うことが重要だと感じました。 新たな気づきは? 動画で得たその他の気づきとしては、捨てることが顧客の利便性を増す場合があること、惰性に流されないこと、新参者の意見を聞くこと、餅は餅屋に任せることなどがあります。特に、垂直統合からの脱却や外注の活用について学びました。 業務の見直しは? 現在の職務では、効率化・高品質化を中心に取り組んでおり、取捨選択をある程度行っていると認識しています。しかし、実際に引き受ける業務には無駄やムラが含まれている可能性があります。これを選別し、より良い処理方法を見つけるために、今回学んだことを活かしたいと感じました。ただし、人間との関係も大切なので、単に定量的な結果や事実を伝えるだけでなく、依頼者の心情に寄り添った対応が重要だとも感じました。 引き算の意味は? 既存業務や新規業務に対して、足し算だけでなく引き算の視点を持つことを意識します。捨てる選択をしてこなかったので、組織としても個人としても抵抗を感じるかもしれませんが、定量的な数値結果や俯瞰的な視野を持ち、情報共有や提案方法を模索していきます。これらを考慮して、同僚や上司に対して恐れず提案する勇気を持ち続けたいと思います。「それ、無くても困らないのでは?」という問いを自分に向けていこうと思います。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

クリティカルシンキング入門

小さな数字の分解、大きな気づき

数字分解はどう考える? 数字を分解するという手法について学びました。まず、数値をWhen、Who、Howなどの要素に分ける際、①加工の仕方、②分け方の工夫、③分解の留意点に注意することが大切だという点を実感しました。たとえ分解した数値からすぐに有用な情報が得られなくても、それ自体が分け方に工夫が必要であるという気付きにつながります。 切り口は何が鍵? また、複数の切り口を見出すためには、目的や立場を踏まえて仮説を立てたり、データを表やグラフで表現してみることが効果的であると感じました。たとえば、ある施設の入場者数の減少を分析する際、切り口を4段階に丁寧に分けることで、減少の実態をより正確に把握し、次のアクションにつなげる経験が非常に印象に残っています。 MECEをどう活かす? MECEの考え方も学びました。全体を適切に捉えるためには、①全体集合体を部分に分ける(足し算)、②変数で分ける(掛け算・割り算)、③プロセスで分けるという三つの観点があること、そして問題解決のプロセスとしてWhat、Where、Why、Howの要素があることを再確認しました。重要なのは、まず全体を定義することだと感じました。 なぜなぜ分析は? 業務上の問題や課題解決に取り組む際、これまで自分の経験に基づく思い込みが原因となってしまうことに気づかされました。従来使用していたなぜなぜ分析は主観的な原因追及に陥りがちでしたが、今回学んだプロセスに基づいた分解手法で、より客観的に問題箇所を特定できると実感しています。 業務改善はどうする? 今後は業務において、GW明けから数字を分解する際に、①加工の仕方、②分け方の工夫、③分解の留意点を意識しながら進めていく予定です。実践を重ねる中で、常に複数の切り口で分析できるスキルの向上を目指し、既存の切り口が最適かどうかを検証しながら思考を鍛えていきます。また、MECEの考え方についても、モレがなくダブりがないかを確認しながら、業務に定着させられるよう努めていきたいと感じました。

マーケティング入門

魅せる工夫で価値再発見

マーケティングの基礎はどう? 今回の学習を通して、「何を売るか」「誰に売るか」「どう魅せるか」というマーケティングの基本要素を体系的に理解しました。単なる商品の提供ではなく、顧客の潜在ニーズを引き出し、価値ある体験を提供することが成功のカギであると再確認できました。 戦略の絞り込みは? また、ターゲットの絞り込みや差別化戦略の重要性、そしてペインポイントの解消による新たな価値創造の視点を得ることができました。実際の事例からは、体験価値を重視したアプローチが顧客の共感や支持を得る強力な手法であると学びました。 社員視点の改善は? さらに、今回の学びはバックオフィス業務にも応用できると感じました。社内業務の効率化や社員満足度向上を図る際、単にサポート業務として扱うのではなく、「顧客視点=社員視点」という観点から、社員がどのように感じ、どのように利便性が向上するかを意識する体験価値を考慮することが大切です。 業務工夫はどうする? 例えば、社内の申請フローを利用する人を意識してわかりやすく簡略化したり、社内イベントを体験価値として演出するなど、日常業務をより魅力的なものに変える工夫が考えられます。 業務効率を数値化? また、業務効率を数値化し、ペインポイントを明確にするためには、アンケートやヒアリングを通じて潜在ニーズを見極めることが有効です。現状の業務プロセスに対し、「誰のために、何を改善するか」という視点で再設計を行い、体験価値を高める工夫をすることの重要性を実感しました。 情報発信はどう魅せる? 情報発信においても、社内の情報共有や業務通知などは「どう魅せるか」を意識し、相手の立場に立った親しみやすいデザインと言葉選びを心がける必要があると感じました。そして、取り組み後には定期的なフィードバックを実施し、必要に応じた軌道修正を行うことで、PDCAサイクルを回し続け、継続的な改善を図ることができると学びました。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

クリティカルシンキング入門

プロジェクト管理に活かせるイシュー整理術発見!

イシュー整理の重要性 イシューについて整理しました。 まず、いきなり考え始めるのではなく、目的を明確にすることが重要です。問いや課題に対しては、その本質や解決の道筋を考え、可能な解決策をいくつかカテゴライズします。そして、本質に対しての裏付けや根拠を数値を用いて行うことが必要です。 プロジェクト管理への応用は? 私はSIerでプロジェクトマネージャーをしています。そこで、この方法をプロジェクト管理やチームの問題解決の場面で活用したいと考えています。新製品開発やソフトウェアプロジェクト、業務改善プロジェクトなどで、リスクや課題を効果的に管理し、進捗を安定させるために用いるつもりです。 イシューの特定と優先順位付けとは? イシューの特定と優先順位付けについては、プロジェクト開始時に潜在的な問題やリスクを洗い出し、イシューとして登録します。各イシューについては、影響度と緊急度に基づき優先順位を設定し、重要な問題から対処していきます。 進捗管理のシステムは? 次に、イシュー管理のプロセス設計です。イシューの進捗を継続的に監視するために、専用のツールやシステムを使用します。また、各イシューには責任者を明確にし、対応策を実行する担当者を決定します。 効果的なコミュニケーション方法は? コミュニケーションと報告の部分では、プロジェクトの進行に合わせて定期的にイシューのステータスをレビューし、必要な対策を講じます。そして、進捗状況や解決策について関係者に適切に報告し、情報共有を行います。 問題解決後の改善策は? 最後に、問題解決のプロセス改善です。イシューの解決後には、対応策の効果やプロセスを評価し、フィードバックを収集して改善点を明らかにします。さらに、解決したイシューの事例を文書化し、将来的なプロジェクトで活用できるようにします。 これらの方法を通じて、プロジェクト管理がより効果的に行えるようになると期待しています。

クリティカルシンキング入門

情報分解のスキルで未来が変わる!

情報の分解のポイントとは? 今回の学習では、情報の分解の仕方を学びました。大きくポイントが4つありました。 1. 受け取った情報を加工し、知りたい情報が読み取れるように加工をする 2. 情報を分解するときに、機械的に加工するのではなく、知りたい情報が読み取れるように分解する 3. 分解の切り口を1つだけにするのではなく、複数の切り口で分解をする 4. 分割するときにMECE(Mutually Exclusive, Collectively Exhaustive)に分解する 特に学びを得た切り口は? 今回の学習では、特に3の項目が大きな学びになりました。情報の違いを探すときに、特定の切り口で分けて数値として違いが出ていても、もう一歩別の切り口で分解すると違う答えが見えることに気づきました。普段意識できていなかったこの点を「本当にそうか?」と疑うことは大事だと感じました。 また、「情報の全体を定義してから分割する」ということも、網羅的に情報を分割する上では重要だと思います。 具体的な活用シーンは? 1. 受領したデータを加工し、社内の打ち合わせやお客様への発表などで視覚的にわかりやすい情報に整理して表示する場面 2. 展示会の来場者アンケートを作成する場面 3. 社内の作業や資料のレビューの際に、抜け漏れがないかを確認する場面 結論をどう検証する? これらをいくつかの場面に適用してみようと思います。 1. グラフ化などをするときに、情報の分割前に切り口を考え、その後もう一度考えた切り口を振り返り、出した結論と比較したいと思います。 2. 昨年のアンケート作成時には、情報収集が難しく、網羅性のないアンケートになってしまっていました。今後はMECEを意識して項目を作成したいと思います。 3. レビューを頼まれた際、気になる部分しかコメントできていなかったので、情報の抜け漏れがないかを意識して確認していきたいです。

アカウンティング入門

ビジネスモデル理解から財務分析までの学び

ビジネスモデルと数値の関係は? ライブ授業を通じて、「ビジネスモデルをとらえてから数値を読む」ことの重要性を理解しました。特に、具体的な事例を挙げられた際にはイメージしやすく、しっかりと理解できました。この考え方は、自分が現在理解している業界や業種以外のものを読み解く場合にも有効であり、情報を得るところから始めることが重要だと感じました。 学習プランの再構築は必要? 学習プランについては、予想通りに進めることができませんでした。再度プランを立て直し、生活スタイルに溶け込ませるような計画を作ることが必要だと実感しています。習慣化の難しさを改めて感じました。 財務諸表を判断基準にする意義 部品調達先選定や取引継続可否を判断する場面において、一つの判断基準としてP/L(損益計算書)やB/S(貸借対照表)の結果を取り入れることが有効だと考えました。取引先の状態を把握し(倒産リスクなど)、その情報を関係者と共有することで、次のアクションを迅速に起動できるようにしていきたいと思います。また、自社のP/LやB/Sの読み解きも続けていきたいと考えています。 B/S理解をどう深める? まずは、B/Sの理解度を整理することに努めます。その後、他社のB/Sを読み解き、自分なりの答えをまとめることで理解度を深めるつもりです。財務経理部門の方にも協力をお願いし、理解度をチェックする予定です(P/Lの時と同様に)。次に、取引先のP/Lや B/Sを読み解き、理解の定着を図ります。 学んだ知識をどう活用する? さらに、今回学んだことを共有することも考えています。人へ説明することで新たな疑問点が浮かび、それを解決することで理解力が向上すると期待しています。最後に、実務に取り込むための検討を行います。定期的に触れていかないと忘れてしまうため、実務の中で反映していくことが重要だと思っています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

「数値 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right