データ・アナリティクス入門

比較が切り拓く説得力

何を比較する? 「分析の本質は比較である」という考え方を基に、分析を行う際には何を比較の対象とするのかを明確にすることが大切だと感じました。また、比較対象が適切かどうか、つまり条件ができるだけ揃っているかを検討することで、説明する相手にも説得力を持って納得してもらえると考えました。 数値変動の理由は? 商品の活用数値に大幅な変動があった際は、原因分析が必要です。その際、単に昨年度同時期の数値を比較するだけでなく、同期間の環境―追い風か向かい風か―を把握することで、より説得力のある分析が可能になると思います。これらの情報がすぐに確認できるよう、ファクト元の整備も重要だと感じました。 業務経験をどう活かす? 特に疑問点はありませんでした。今後は、皆さんの業務経験を参考にしながら、さらに多角的な観点で分析を深めていければと思います。

クリティカルシンキング入門

図と文章で魅せる資料づくり

伝える手段は適切? まず、伝えたい内容をはっきりさせるために、文章だけでなくグラフや図なども目的に沿った形で用意する必要があると感じました。伝え手がしっかり情報を受け取ってくれるよう、相手の立場を考慮しながら書くことが重要ですが、文章が長くなりがちな点は適切な分量でまとめる工夫が必要です。 経験をどう活かす? メールやチャットで文章を作成する経験が豊富なため、そのスキルを活かして情報を整理し、伝えたい内容を漏れなく書き出す方法を試行錯誤する必要があると感じています。 グラフで伝わる? また、これまでは図を使った説明には慣れていましたが、数値から適切なグラフを作成する経験が少なく、少し苦手意識があります。今後はグラフも併用して情報を提示し、より良い資料作りができるよう、手本となる良質な資料や事例を探していこうと思っています。

データ・アナリティクス入門

数字に秘めたマーケ戦略の可能性

指標を再確認する? クリック率、コンバージョン率、A/Bテストなどの指標については、EC企業を得意先とした営業活動の中で既に馴染みがありました。しかし、理解が深まっていなかった部分もあったため、改めて学ぶことができ、大変有意義でした。 数値判断の秘訣は? ひとつひとつの項目を数値化し、比較検討する過程で、意思決定における数値情報の重要性を実感しました。WEBマーケティングが現業務において不可欠なタスクであることを再認識するとともに、今回の講座とW4の動画をもう一度見直し、さらなるスキルアップを図っていきたいと考えています。 データ分析の新展開は? また、社内で扱う売上実績データとWEBマーケティングで得られる情報との関連付けを進めることで、これまでとは異なる視点からの分析が可能になることを期待しています。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

クリティカルシンキング入門

全体像に迫る分析の妙技

各項目の整理は? 分解作業では、まず各項目をMECEの視点で整理することの重要性を再認識しました。一つ一つを個別に洗い出し、漏れや重複がないようにすることで、確実に全体像を把握できると感じました。 伝える工夫は何? また、手元にある数字をそのまま確認するだけでなく、伝えるべき内容に合わせた見せ方を工夫することで、情報の本質を効果的に伝えられる点にも気づかされました。 分析で何が見える? さらに、ブランドの売上数値などを分析する際には、間口や奥行、性年代など、複数の視点で深堀りする工程が、問題点や潜在的なチャンスを特定するのに役立つと実感しました。定量的な調査結果も、事実を正確に維持しながら有意義な提案へと活かせる点が印象深かったです。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

データ・アナリティクス入門

データを活かす!視覚化テクニック入門

データはどう活かす? データは単にビジュアル化すれば良いわけではなく、用途に応じて適切に使わなければなりません。また、単にグラフに表現された情報だけでなく、その背後や空白の部分からも情報を見つけ出すことができます。さらに、TPOに合わせて代表値の取り方や計算方法が変わりますが、その結果だけで仮説を導き出すことはできません。 難業務の可視化方法は? 現状、私が携わっている業務ではデータを利用したり、数値化・グラフ化する機会があまりないため、自分の業務に適用するのが非常に難しいと感じています。反対に、数値化やグラフ化が難しい業務をどのように工夫して視覚的に示すことができるのか、そうした方法について学びたいと考えています。

戦略思考入門

直感と数字が導く新たな判断

なぜ断れないの? 頼まれたら断れない性格の影響か、自分が何かを捨てることが苦手だと改めて感じました。数値化して優先順位をつけると整理しやすいのは確かですが、勘や予感に基づいた優先順位付けによって、良い結果に結びついた経験も多々あったため、自分の判断基準を再定義する必要があると考えています。 優先順位の決め方は? ERP導入案件の商談では、顧客や競合に関する情報を幅広く収集し、適切に優先順位をつけることが可能だと感じています。また、各商談で作成する提案書は100ページを超えることが常ですが、必要な部分と無駄な部分を見極め、意図的に書かない部分を設けることで、重要なポイントがより際立つ提案書にしていきたいと思います。

クリティカルシンキング入門

MECE思考で拓く数値の新視点

数字データ整理は? 数字データを分解し、表やグラフなどで見やすく整理すると、情報の捉え方が変わり、違った視点から理解できることに気づきました。情報を整える際は、もれなくダブりなく整理するためにMECEを意識し、層別、変数、プロセスといった切り口で分類することが大切だと実感しています。 事業所データの見方は? また、仕事で各事業所ごとのデータを扱うにあたり、階層別、用途別、期間別といった観点からMECEに基づいて分類することが、傾向の管理や分析に役立っています。数字データを表にまとめ、グラフ化することで、より見やすく、伝えやすい形に加工する工夫が重要だと感じました。

「数値 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right