データ・アナリティクス入門

数字とロジックで捉える課題解決

問題点の整理はどうする? GAILを通じて、問題点の洗い出しが不十分であると痛感しました。直面している課題や状況を明確に言語化することがまず必要であり、そのためには「あるべき姿」と「現状」とのギャップに着目して問題点を整理することが重要だと学びました。たとえば、「なぜ赤字なのか」「なぜ生徒が集まらないのか」といった問いから、まずは数字に基づいて優先的に解決すべき問題を特定し、次に具体的な解決策(how)を検討するプロセスが非常に参考になりました。 計画実績のギャップは何故? また、販売実績や利用状況の分析時には、「なぜ計画に対して実績が出ないのか」「目標に対して利用状況がどのように乖離しているのか」という問いを持つことはもちろん必須ですが、さらに、どの業態の顧客が利用しているのか、あるいは利用していないのかといった具体的な観点から問題を深掘りすることも大切だと感じました。いきなり解決策に飛びつくのではなく、what(現状把握)→where(問題箇所の特定)→why(原因の追究)→how(解決手法の検討)の流れを大切にすることが、問題解決への着実なアプローチだと考えています。 MECE活用は有効? さらに、問題解決プロセスをきちんと踏む上で、MECEの考え方は非常に有効であると実感しました。その一環として、ロジックツリーを活用しながら実績の分析を進める手法は、今後の業務にも積極的に取り入れていきたいと思います。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

データ・アナリティクス入門

さまざまな視点で問題解決を探る魅力

分析に必要な切り口とは? 分析を行う際には、さまざまな切り口を持つことが重要です。性別や年代といった属性に加えて、契約内容なども分析に取り入れることで、問題解決の糸口が見つかる可能性が高まります。物事を分析する際には、MECE(Mutually Exclusive and Collectively Exhaustive)の原則に従い、要素が重複したり欠けたりしていないか確認することが必要です。また、ロジックツリーを用いて、物事を分解して考えることで効果的な分析が可能になります。 問題解決に向けた新しい視点は? 分析において、それぞれの属性や切り口に新しい視点を加えることで、問題解決へと繋げることが求められています。バイアスを排除し、客観的な視点で物事を理解するためには、問題や課題を細分化して考えることが有効です。 契約者分析の具体例は? 具体例として、契約者の分析においては、契約時間帯や取引接点、折衝回数、前回の契約からの経過年数などの要素を考慮することが考えられます。また、ロジックツリーを活用し、契約率の改善を図ることができます。これにはリードの質を向上させるためのスコアリングや獲得チャネルの最適化のほか、営業プロセスとして初回アプローチの改善やフォローアップの最適化、営業担当者のスキル向上が含まれます。さらに、価値提案の強化として、パーソナライズされた提案の提供や他社との差別化も重要なポイントとなります。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

リーダーシップ・キャリアビジョン入門

ふたつの関心軸で変わるコミュニケーション

マネジリアルグリッドとは? マネジリアルグリッドという概念について初めて知りました。「人間への関心」と「業績への関心」の2つの軸に分けて考えると、確かに理解しやすいと思います。コミュニケーションがうまくいかないと感じるときには、この関心の軸が異なっているのかもしれないと感じました。業務中はどうしても「業績への関心」に比重が大きく傾きがちかもしれませんが、私自身は「人間への関心」に寄っていると思います。両軸とも大切にしたいと感じています。 MBOにおける環境要因とは? 次に、環境要因と適合要因の視点から、直近の目標設定(MBO)でメンバーへの支援の準備を進めたいと思います。対象者の経験や知識スキルの把握、そして組織やチームの方向性や状況を整理して、その上で主に支援型のアプローチを考えていますが、達成志向型のアクションも忘れずに取り入れていきたいです。 タレントマネジメントの活用法は? 具体的なアクションとしては、まずはタレントマネジメントを活用して対象者の情報を把握します。スキルについてはある程度把握できると思われます。また、リーダー陣の会議を通して、組織の課題や方向性を理解することが重要です。組織再編があったばかりなので、この点が特に重要です。そして、定期的な1on1の機会(現在は月1回)を利用して、対象者のバックグラウンドを知り、キャリアプランを描きつつ、明確なゴール設定を目指したいと考えています。

クリティカルシンキング入門

シンプルに伝える文章の力

日本語の使い方は? 相手に分かりやすく伝えようと努めていたつもりでしたが、日本語の使い方に改めて課題があると感じました。今後は、主語を一つに絞り、述語がその主語に確実に対応するよう心がけ、文章も簡潔にまとめていきたいと思います。 根拠はどう考える? また、主張を伝えるための根拠の組み立て方として、抽象的な柱から徐々に具体的な内容へと展開していくステップを学びました。しかし、伝えたい相手の立場や状況によって興味や関心は異なるため、相手の視点に立った根拠づけが非常に重要だと感じています。 学びを生かすには? このような学びは、日常のコミュニケーションや資料作成といった様々なシーンで活かせると考えています。たとえば、伝えたい内容をピラミッドストラクチャーで整理し、主語と述語を意識した簡潔な文章を心がけることで、相手に伝わりやすくなり、結果として相手の理解負担だけでなく、自分自身の伝える負担も軽減できると思います。 文章チェックは? 具体的には、メールやチャットなどの文章コミュニケーションにおいては、①主語と述語の関係が正しいか、②文章ができるだけ簡潔にまとめられているか(文が60文字以内を目安にする)、③相手の立場に立った内容になっているか、という点を常に確認していきたいです。また、資料作成の際には、ピラミッドストラクチャーを用いて思考を整理し、論理構造の妥当性をしっかりと確認することを意識します。

戦略思考入門

「捨てる判断で顧客満足度アップ!」

捨てる判断の本質は? 実践演習で最も印象に残ったのは、「捨てる判断」を明確化することでした。目的や指標、課題、そして自身がかけた工数など、さまざまな視点から判断をする重要性を学びました。これまでは工数ばかりが判断基準でしたが、工数がかかっても必要なこと、逆にかからなくても不要なことを見極める必要性を認識しました。この理解が不十分だったので、大変勉強になりました。また、不要なものを捨てることがかえって顧客の利便性につながることも参考になりました。過去の惰性で物事を増やすのではなく、根拠を持って捨てることの重要性を学んだのです。 定量行動の意味は? 今後の企画立案では、この学びを特に意識して取り組んでいきます。特に、定性ではなく定量を意識して行動することが重要です。効率的・効果的に目的を達成するためには、定量的な判断が不可欠です。この判断は、さらに投資をする価値があるのか、あるいは捨てるべきか、方法を変えるべきかという貴重な基準になります。これを意識しながら行動していきます。 効果的実践のステップは? 実践に向けたステップとして、目的や方針の確認、情報の掘り下げ、定性的内容を定量化すること、現状の成果と課題の把握、時間軸をベースとした成果の評価、そして課題解決に向けた優先順位付けを行っていきます。さまざまな選択肢が出てくることも予想されますが、周りの意見も参考にしながら計画を策定していきます。

データ・アナリティクス入門

目的で変わるデータ分析の極意

目的は何だった? 今週の学習を通じて、データ分析は単に数字を集める作業ではなく、まず「何を目的に、どの項目と何を比較するのか」を考えることが重要だと強く実感しました。これまでの私は、手元にあるデータをただ集計し、そこから何か分かるのではないかと考えることが多かったのですが、その結果、正しい判断に至らない場合があると気づかされました。 本質は見えてる? 特に印象に残ったのは、分かりやすいデータだけに頼る生存者バイアスの考え方です。自分自身も、分析しやすいデータに引っ張られがちであったため、「本来見るべきものは何か」という視点を持つ必要があると痛感しました。 課題は何だろう? これまでは、商業部門や関係部署からの依頼で内容を十分に整理せずに作業を進めることがあり、その結果、意図とのズレや手戻りが生じることもありました。今回学んだ「目的と比較を意識したデータ分析」は、現在担当している業務にそのまま活かせると感じ、作業開始前の進め方を見直す良い機会となりました。 対策はどうする? 今後は、依頼を受けた段階で「何を明らかにしたいのか」「どの期間や条件と比較するのか」を必ず確認し、目的とゴールを整理してから作業に取り組むようにしていきます。一方で、実務では依頼元自身が目的を明確に言語化・整理できていないケースも多いと感じ、この場合、どこまでこちら側が踏み込むべきかという課題も感じました。

クリティカルシンキング入門

クリティカル思考で本質を見抜く

クリティカルシンキングは何? 受講を通して、クリティカルシンキングの大切さを改めて実感しました。これは「問いを立て、物事の本質を見極めた上で最適な解決策を導く思考法」と理解しています。 どの視点が重要? 問いを立てる際には、視点・視座・視野という三つの側面が重要です。過去には視座を変えたつもりでも、現場の視点に捕らわれ、最適な答えを導けなかった経験がありました。また、構造分解や要素分解のアプローチにおいても、ある一つの視点に偏り、正しい結論に至らないケースがありました。 MECEをどう考える? さらに、MECE(もれなく、ダブりなく)を意識せず中途半端な答えに終わっていたことも反省点です。こうした課題を克服するためには、日々の意識と訓練を続けることが不可欠であると感じています。 出張前の準備は? 新たに取り組みたいのは、毎回の出張前に提案資料を作成する前、クリティカルシンキングで学んだ内容を活かして整理することです。トピックごとにNoteを作成し、自分の考えを整理する時間をしっかり確保していくつもりです。 伝え方を改善する? また、思い込みで進めるのではなく、一度立ち止まり、本当に適切な方法であるかを考える時間を持つことを意識していきます。やっていること自体は間違いではないと認識しつつも、伝え方や進め方に改善の余地がある場面では、柔軟に変えていく姿勢を継続して持ち続けたいと思います。

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

仮説から未来を切り拓く学び

比較を正確にするのは? 分析は、単に項目を比べるだけではなく、具体的な要素を明確にすることで、より良い意思決定へと繋げる重要なプロセスです。比較対象となる項目以外の条件を可能な限り同一に揃えることで、正確な比較が可能となるため、「Apple to Apple」の状況が求められます。データ分析に用いる情報には、定性データと定量データの両方があり、それぞれの特性を活かしながら分析を進めることが必要です。 仮説の立て方は? データ分析のプロセスでは、まず目的を明確にし、その目的に沿って「仮説」を立てることが大切です。仮説を基に、どの項目をどのように抽出し、どんな結果が想定されるかを考えることで、分析の方向性が見えてきます。また、グラフの作成時には、何を強調したいかという視点から見せ方を工夫することで、情報が整理され、分かりやすいプレゼンテーションが実現できます。 顧客データの意義は? 私は食品メーカーの営業職として、自社の売上や利益のデータはもちろんのこと、主要なお得意先である小売業やドラッグストアなどの顧客データも分析しています。膨大な情報の中から、目的に沿った仮説を立て、抽出すべき項目を明確にすることで、単なるデータの羅列ではなく、得意先の課題やチャンスを具体的に示す資料を作り上げることを意識しています。このプロセスを通じて、課題解決への道筋を明確に示し、より良い提案につなげることが求められています。
AIコーチング導線バナー

「重要 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right