クリティカルシンキング入門

会議を操る!課題克服への挑戦

会議運営の難しさは? 実務で陥りがちな「イシュー」を常に意識し続ける難しさを改めて実感しました。ファシリテーターとして会議を進行する際、画面やホワイトボードに議題を明記しておくよう努めています。しかし、途中参加のメンバーがいたり、自由な議論が行われる場合、議題に沿った軌道修正が難しくなるという課題も感じています。こうした状況を踏まえ、全体の効率を高めるために、自ら率先して会議の方向性を整える必要があると感じています。 考え方の転換は? また、「なんとなく考える」ことを避ける大切さも強く意識しています。過去に、漠然としたアイデアで作成したプレゼン資料では、完成までに時間を要した経験があります。そこで、初めからしっかりと考え、骨子を組み立てることの重要性を学びました。 会議時間の管理は? さらに、会議を主催する場合、議論が散漫になりがちで時間管理が難しいこともあります。そこで、事前に伝わりやすい英語表現に訳し、関係者と確認しておくことで、会議開始時点で全員の認識を合わせるようにしています。会議中も常に議題が画面上部に表示され、議論が逸れた際には速やかに軌道修正を行うよう心掛けています。

データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

クリティカルシンキング入門

正しいイシューが未来を拓く

イシューはどう見る? 今ここで答えを出すべき問い、すなわちイシューに着目する大切さを再認識しました。正しいイシューを設定するためには、まず現状を正確に理解し、問いを残し共有・意識することが必要です。ファストフード店の事例を通して、客離れの改善策を探る際に一面的な視点ではなく、幅広い視点で検証する重要性を感じました。 課題整理はどう進む? また、日常業務においては大小さまざまな課題が常に存在しており、それぞれの課題を抽出・整理し、優先順位を付けて実行、結果を分解して分析することが業務推進に欠かせないと実感しています。今回の学びを通じて、論理的なアプローチが業務の改善に直結することを実感しました。 論理で歩む未来は? さらに、Week1から5で学んだ視点の変化や分解、イシュー・結論・根拠の整理、グラフ化といった方法論を今後の業務に積極的に取り入れ、より明快で論理的な進め方を心掛けていきたいと思います。プレゼンテーションにおいても、相手を意識した論理的で分かりやすい資料作成および説明に努め、会議では不要な話題を避け、常にイシューに意識を向けながら参加していくつもりです。

データ・アナリティクス入門

議論と実践で広がる学びの輪

学びはどう活かす? ライブ授業では、講座の振り返りを行い、学んだ知識を実際の分析に生かす取り組みをしました。これにより、受講前と比べて明確に得たものがあると実感しました。 意見交換はどう効く? グループワークを通じては、自分の意見の推敲や新たな視点の獲得に大変役立ったと感じています。各人の考えを共有する中で、議論が深まり、より効率的に分析に取り組む方法についても考える機会となりました。 実践で何が見える? 実践演習では、講座の振り返りに十分な時間をかけることで、手を動かして考えることの重要性とともに、手を動かさずに思考することの大切さにも気づくことができました。フレームワークを活用しながら、分析のバランスや順序を意識して取り組む姿勢が印象に残っています。 目的と仮説の行方? また、目的の明確化や仮説設定の重要性を再認識しました。何を伝えたいのか、どのような問題を解決したいのかを最初にしっかりと考えることで、効率的な分析が可能になると感じました。ただし、仮説設定の段階でも実際に手を動かして考えたほうが良い面もあるため、両方のアプローチを意識することが大切だと思いました。

クリティカルシンキング入門

偏りを超えた新しい気づき

なぜ偏った視点に気づく? 物事を考える際、人間はつねに偏った見方をしてしまうという現実を意識しています。その偏りこそが「ほかには何があるのだろうか」と自分に問いかけるきっかけとなり、課題に取り組む前にまず問いを立て、その答えを導き出すプロセスが大切だと学びました。また、相手に伝えるときは正しい日本語を使い、伝える手順を踏んで具体的な理由を添えることが必要だということも理解しています。 どう伝えると分かりやすい? 顧客との会議や提案の場面では、まず問いを明確にし、事前に参加者と共有することが重要と感じています。その結果、伝わりやすい資料作りや話し方を工夫することで、常に重要なポイントに焦点をあてたブレのない進め方が可能になると考えています。 何を合わせるべきか? さらに、自分の常識は会議参加者の常識と必ずしも一致しないことを認識し、まずは前提条件を合わせる姿勢が求められます。その上で、議題となる問いを全員で共有し、話が脱線しそうな場合には常に問いに立ち返って軌道修正を図ります。そして、情報を収集しデータを分解することで、相手に伝わりやすい形の資料を作成する努力を続けています。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

クリティカルシンキング入門

熱くも冷静に!自分を見つめる瞬間

本当に目的は達成できた? 目的を見失わず、考えた答えが本来望んでいた結果に至るようにする必要性を実感しました。人は「考えたい」「考えやすい」という性質があるため、無意識のうちに偏った考えに陥っていたことを、自分の過去の経験から認識しました。 批判思考の本質は? また、クリティカルシンキングは、一朝一夕で身につくものではなく、日々意識して考え方を変えていく努力が求められます。ここでいう「クリティカル」とは、他人を批判するのではなく、まず自分自身に向けられるものだと理解しました。 会議中の一工夫は? 具体的には、ミーティング中に自分の考えや発言が偏っていないか、さまざまな角度から検証することが重要です。上司や部下との報連相、コミュニケーションの場面でもこの姿勢が活かされると感じます。また、一日の終わりに、その日に学んだことをどのように活用したかについてメモを取ることも有効です。 感情のコントロールは? 議論の中で熱くなったり、感情的になる場面では、特に偏った考えに陥りやすいと思います。このような場合、どのように冷静さを保ち、自分を客観的に見つめる方法があるのでしょうか?

リーダーシップ・キャリアビジョン入門

現場から学ぶリーダーシップの真髄

能力向上の重要性とは? 行動は、能力と意識から成り立つため、評価や判断に関わらず、常に能力向上と意識向上に努めることが重要です。また、行動で評価されることが多いため、日常の立ち振る舞いに気を配ることが大事です。 信頼が導くリーダーシップとは? 現場の人が最も現状を理解しているため、リーダーが必ずしも一番偉いわけではありません。リーダーシップにはポジションや立場は関係なく、信頼が無い限り、人は付いてこないということです。 実践できる行動計画は? リーダーシップを学ぶ際には、行動だけでなく、その背景にある能力や意識にも注目することが大切です。そのためには、人間関係を構築し、直接質問できる環境を整えることが必要です。 また、悪い知らせや組織にとってマイナスな報告を受けた際には、まず感謝の意を示します。その上で、適切な行動やアドバイスにつなげることが大切です。 さらに、現場に足を運ぶことの重要性を認識しました。悪い知らせを伝えてもらえるようなコミュニケーションを築き、実際に何が起こっているかを直接確認することで、他人の報告だけに頼らず、現実を正確に把握することが求められます。

クリティカルシンキング入門

折れ線で描く!学びの軌跡

グラフはどう選ぶ? 今回の学習を通じて、読み手の理解をより深めるためには、適切なグラフの見せ方と文字の表現の工夫が重要であると再認識しました。伝えたい内容に合わせてグラフを使い分けることが求められる中、連続性のある変化や傾向を示す際には、折れ線グラフが特に有効であることを学びました。 文字表現を工夫する? また、文字の表現に関しては、強調する内容が過剰にならないよう装飾に注意する必要があると感じました。フォントの使い分けによって、印象が大きく変わることも理解できました。 縦棒グラフはなぜ? 学習前は、稟議資料などでグラフを作成する際に縦棒グラフを多用していました。しかし、事業の成長率や取引先数の変化といった連続性のある情報を伝える場合、折れ線グラフを使って説明する方が効果的であると気づきました。さらに、複数のグラフで表現できる情報は一つにまとめることで、読み手の理解が一層促されると感じ、今後実践していきたいと考えています。 伝わる文章とは? 勉強会の開催や各種依頼事項においては、相手の理解を第一に考え、簡潔で余計な装飾を抑えた文章作りを意識していきたいと思います。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

SNS分析で得た新たな学びとテクニック

代表値の使い分けは必要? 代表値と散らばりの両方を意識する必要があることを学びました。代表値には単純平均、加重平均、幾何平均、中央値があり、特に平均値に3つの種類があるため、使い分けが重要です。 ビジュアル化の選び方は? また、ビジュアル化の重要性についても考えさせられました。どのようなグラフを使うかは分析したい内容に依存し、この点は経験から学んだつもりでしたが、実際には正確な知識が不足していたことを改めて認識しました。 各種データの分析に標準偏差を使おう これまでは単純平均しか算出したことがなかったため、今後は必要に応じて3種類の平均値を意識して使い分けるようにします。SNS投稿の反応を分析する際もばらつきを考慮せず、平均値だけで傾向を把握していましたが、標準偏差も用いることでより正確な把握・報告ができそうです。 例えば、SNS投稿に関する実績報告時には、エンゲージメント率などを平均だけでなく標準偏差も使用して分析しようと思います。投稿の種類や内容のカテゴリーによって差があるのかどうかも検討しつつ、ビジュアル化する際は適したグラフを選ぶことも重要だと考えます。
AIコーチング導線バナー

「意識 × 認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right