クリティカルシンキング入門

視覚工夫で魅せる伝え方

伝え方の工夫は? 今回の学びを通じ、「何を」「どのように」伝えるかという目的を明確にした上で、文章や図表、グラフを丁寧に構成することの大切さを実感しました。特に、グラフの見せ方や文字の色、字体、さらにはアイコンの使い方など、視覚的な工夫について、これまで十分な意識が欠けていたことを改めて認識しました。 情報整理のコツは? また、伝えたい情報の中で何を最も強調すべきかを事前に整理し、受け手の立場に立った分かりやすい資料作成と情報提供を意識する必要性も感じています。今回の学びは、週次の報告会議や月次のエリア会議など、業務の現場でより効果的に情報を伝えるための重要な指針となりました。文章やスライド、グラフの示し方に工夫を加えることで、戦略の浸透や現場のモチベーション向上にもつながり、業務提案が実績により結びつくと実感しています。 実践で活かすには? 私は現在、店舗戦略の策定や目標提案、月次の実績確認などの業務に取り組んでいます。その中で、本社役員への報告や成果を上げた店舗へのフィードバックの場面で、今回の学びを実践的に活かすことができると感じています。具体的には、内容を視覚的に分かりやすく示す工夫が、報告資料の質を向上させ、戦略の実行力を高めることにつながると確信しています。 会議資料の見直しは? 実際、先日の会議に向けて、今回の学びを反映する形で、資料の内容や構成を見直しました。今後は、目的と受け手を常に意識しながら、日々の業務に学びを積極的に活かしていく所存です。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

クリティカルシンキング入門

偏りを超える思考の旅

自己認識の大切さは? クリティカル・シンキングを習得する上で、まずまず印象に残ったのは、自分自身の思考の偏りやクセを客観的に認識することの大切さです。どうしても自分が考えやすい方向に偏りがちであるという点は、自らの行動を振り返った際に実感できました。自分の思考の特徴を把握し、冷静に見直す習慣をつけることで、思考の幅を広げ、偏りから抜け出すことができると感じました。 相手に働きかける方法は? また、単に課題解決を行うだけでなく、論理的かつ構造的な思考を通じて相手に働きかけるコミュニケーションにつなげる意識が重要であると再認識しました。初回のライブ授業までは、クリティカル・シンキング=問題解決手法というイメージが強かったのですが、実際には、相手の置かれた状況や考えをしっかり意識し、どのような行動を促すかという点も大切だと実感しました。 顧客の課題理解は? 具体的には、例えば顧客向け資料の作成や、プレゼンテーション、打合せでのファシリテーションにおいて、まず伝えたい内容や、顧客が抱える本質的な課題を正確に理解することが必要です。思考のスタート地点で情報を整理し、具体と抽象の視点や、複数の観点からの検討を行うことで、無駄のない効率的な作業と、相手に響く提案ができると考えています。 突発状況への対処は? さらに、突発的な質問や状況に対しても、文脈を的確に汲み取り、適切な回答ができるように、最初の段階から顧客にとって本当に有益で、行動を促すような情報の収集を心がけたいと思います。

データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

データ・アナリティクス入門

仮説で広がる学びの世界

仮説の意味は? 仮説について、「結論の仮説」と「問題解決の仮説」という2つの種類があることを学びました。普段何気なく使っていた「仮説」という言葉について、自分はどちらの立場で話していたのだろうかと振り返る貴重な機会となりました。また、仮説を考える際には、決め打ちせず複数の可能性を探ることや、さまざまな切り口から網羅的に考えることの重要性を再認識しました。さらに、データ収集においては、必要なデータだけでなく、仮説に対する反論を排除するために比較対象となるデータも意識的に集めるべきであるという点が印象に残りました。 3Cと4Pの使い分けは? 業務では、Customer/Competitor/Companyの3C分析を中心に行っていましたが、細かいサービス検討の場面では、Product/Price/Place/Promotionの4Pも活用していく必要性を感じました。特に新規事業の商品検討にあたっては、4Pの視点からより具体的な検討を進めたいと思います。 問題解決の手順は? また、問題解決のプロセスとして、What、Where、Why、Howの順で考えることの重要性を学びました。これまでどうしてもHowから着手してしまう癖があったため、今後の学習期間内に、残りのプロセスもしっかり取り入れるようにしていきたいと考えています。 検証との連携は? 最後に、仮説と検証はセットで考え、事前の準備や仕込みを徹底し、比較データなどを用いた適切なデータ収集ができるよう努めたいと思います。

リーダーシップ・キャリアビジョン入門

部下の行動を理解するフィードバック術

部下の背景を知るには? 部下の言動には必ず理由があることを実感しました。メンバーの行動の背後にある理由や背景を理解せずにフィードバックをしても、すれ違いが生じることを学びました。もちろん、メンバーが自分の言動の理由を言語化して説明してくれるとありがたいのですが、何も言わず黙り込んでしまうこともあります。メンバーの様子を把握するためにも、フィードバックは対面が基本であり、リモートの場合も必ずカメラONで行うことが重要だと認識しました。 どうしてリアルが重要? 期末にはMBOの評価面接や能力開発面接がありますが、これも基本的にリアルで実施します。やむを得ずオンラインで行う場合でも、カメラONの面談を心掛けています。また、ネガティブな評価を伝えなければならない際は、以下の点を意識しています。まず、事実に基づいて具体的に指摘すること。そして、メンバーの努力に共感し、将来的な成長を期待していることを伝え、前向きになれるよう支援します。自分の過ちに対しては素直に認め、その改善意志を示すことも肝要です。 フィードバックの極意は? 改善すべきネガティブな点だけでなく、ポジティブなフィードバックも事実に基づいて行うよう心掛けています。そのために、気づいたことを忘れないようメモを取ることを継続しています。メンバーの心情に共感するには、行動よりも感情に焦点を当てて質問することが大切です。目標が達成できなかった場合は、目標設定時の期待を再確認し、次年度に向けてメンバーを鼓舞しています。

データ・アナリティクス入門

実践で磨くデータ解析の魔法

分析の本質に迫る? 今までは、適当にグラフを選んだり、大まかな平均値を算出するだけで十分だと考え、自分なりの解釈でデータを加工していました。しかし、今回の学びを通じて、目的に応じた最適な計算方法や加工方法が存在することを再認識し、そのおかげで分析力が格段に向上することを実感しました。たとえば、ヒストグラムを用いることでデータの散らばりを可視化できることや、代表値として単純平均だけでなく、加重平均や幾何平均を算出することで、より精密な分析が可能になる点を学びました。演習やグループワークを通じ、目的や仮説に合わせた手法の使い分けの大切さも理解できました。 データ分析をどう工夫する? グラフの作成やデータの計算には苦手意識がありましたが、今回の学びをもとに自主的に練習していくことの重要性を感じました。普段はアプリやITツールを使って数字をまとめ、それをもとに売上報告や予実管理を行っていますが、今後は自分で実際にデータを加工し、深く掘り下げてみようと考えています。たとえば、顧客アンケートの分析においては、単純平均だけでなく、満足度のばらつきを把握するための計算に挑戦したいと思います。また、先週の学びも取り入れ、単にデータを加工するだけではなく、具体的に何を調べたいのか、目的は何かをしっかりと意識しながら実践していきます。 グラフ選びの裏側は? なお、今週の事前準備ではヒストグラムを選んだ方が多かったと感じましたが、他のグラフを試してみた方もいらっしゃるのではないかと考えています。

データ・アナリティクス入門

データ活用で未来を切り拓く

最終週の学びはどうだった? 今週は最終週ということもあり、講義を通じて現状把握からデータ分析までのプロセスを総合的に演習しました。どのような課題があるのか、またその課題を明確にするためにはどのようなデータを収集し、どのように見せるのが適切なのかについて学びました。 データは十分揃っている? しかし、その過程で実際に必要なデータが十分に集まるのかという疑問も浮かびました。現実には、分析に十分なデータが整っている状況はなかなか見受けられないことを実感しました。 どうやって改善するの? これからは常に課題解決の意識を持ち、どんなデータが必要なのかを考えながら業務に取り組んでいきたいと思います。分析以前の段階で、既にデータがあるものの活用されていなかったり、そもそも必要なデータが得られていないというケースも散見されるため、まずは現状のデータをしっかりと比較・検証し、仮説を立てた上で課題解決に向けた取り組みを進めることが大切だと感じました。 統計学の疑問は何? また、統計学的な観点についてもさらに学んでみたいと考えています。例えば、アンケート調査を実施した場合、何件の有効回答が集まれば信頼できるデータとみなせるのか、という点は特に興味深いです。ある評価指標が低い状態からわずかに上昇した場合、その変化が誤差の範囲内なのかどうか、母数に対してどの程度の割合であれば誤差として認識すべきかという具体的な例に基づき、より専門的なデータ分析について深掘りして学んでいきたいと感じました。

クリティカルシンキング入門

MECEで問題解決!実践的な学び

分析で重要なアプローチとは? 物事を分析する際に、売上高や入場者数の分解を行いました。この際、ただ機械的に分解するのではなく、仮説を持ち、短絡的に考えずに試行錯誤することの重要性を感じました。また、問題解決のステップとして「①問題の明確化」「②問題個所の特定」「③原因の究明」「④解決策の立案」があることを改めて認識しました。MECE(Mutually Exclusive, Collectively Exhaustive)は特に②③④の解決ツールとして有効です。MECEのアプローチには、層別分解、変数分解、プロセス分解があり、それらを自然に思い浮かべられるように意識しています。 上位層に報告する際のポイントは? プロジェクトで問題が発生した際、現場以外の社内の上位層に報告するときに、全体を俯瞰した整理が求められます。現場の部門は実情を把握しているため、自分の見えている範囲の細かい部分を報告しがちですが、これでは上位層が判断や解決策の妥当性を審議できません。全体を俯瞰して説明する上で、MECEのフレームワークは重要だと感じます。普段から業務全体を見渡す習慣をつけておかないと、問題解決のステップに進むことができない危険性を感じています。 作業見積工数の妥当性をどう示すか? 現在、顧客からプロジェクトの作業見積工数の妥当性を問われており、MECEで説明が求められています。通常作業と特別作業の区分、お互いの作業に重複がないかを確認するために、MECEの層別分解を実施してみています。

リーダーシップ・キャリアビジョン入門

日々の積み重ねが導くリーダーシップ

リーダーシップの秘密は? リーダーシップは「信頼を得て従うメンバーがいること」と定義され、一人で発揮できるものではなく、必ず他者を巻き込むことで成立するスキルだと理解しました。また、このスキルは特定の役職や状況に限定されるものではなく、誰にでも発揮する機会があるという認識を新たにしました。 要素は何で構成? リーダーに必要な要素は、行動、能力、意識に分けられると考えています。特に、能力と意識を土台とし、日常的な当たり前の行動を積み重ねることが、リーダーシップの発揮には不可欠であると感じました。これまでは「目指す姿」を描いていたものの、具体的な形に落とし込めていなかったため、今後はこれらの視点から自分のあり方をより明確にしていきたいと思います。 対話で何を伝える? 具体的には、自身の考えをしっかりと伝えるとともに、メンバー全員と1on1の対話を重ね、各自の成長や組織への貢献、そして自己実現についてしっかりと議論し、相互の信頼関係を深めることを目指します。また、リーダーシップは特定の役職だけでなく、どの立場にあっても発揮できるものであることを示すため、日常の中で主体的に行動する組織づくりにも取り組んでいきます。 育成方法はどう? さらに、リーダーの育成には、メンバーに権限を委譲するデリゲートが基本的かつ効果的であると考えます。しかしながら、他にも効率的で効果的なリーダー育成の方法があるのではないかと感じており、その可能性についても今後検討していきたいと思います。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

リーダーシップ・キャリアビジョン入門

対話で育む自己成長の瞬間

どうしてフィードバック成功? 評価面談ロールプレイングでは、課長役を演じる貴重な機会を得ました。効果的なフィードバックを意識し、相手の心情に配慮したコミュニケーションができた点は大変有意義でした。動機づけや自己エンパワメントについて改めて考える機会ともなり、改善の意志を伝える大切さや、複数の視点から物事を見るクリティカルシンキングの必要性を実感しました。 何が学びを深めた? グループ対話での「学びと成長」振り返りでは、パスゴール理論、エンパワメントや質問力、キャリアアンカーなど、さまざまなテーマが各参加者ごとに印象深く語られ、非常に興味深い意見交換が行われました。 どうやって理想追求? また、ありたい姿を描きなおす過程では、理想とするリーダー像自体は大きく変わらなかったものの、その実現のための具体的な行動指針や方法論を学べたことが大変有意義でした。さらに、強化すべき知識やスキルの重要性を再認識し、習得に向けた計画に対するモチベーションが向上しました。 タスク分配は円滑? 今後、ジュニアメンバーへのタスクの割り振りにおいては、パスゴール理論やエンパワメント実践のステップを意識し、業務実施後には動機づけを行いながら、成長のサポートを徹底していきたいと考えています。具体的には、目標設定や計画の策定、進捗の確認、そして振り返りの際には頑張った点をきちんと認め感謝することを基本としながら、改善点を明確に伝え、解決策を共に考えていくプロセスを実践していく予定です。
AIコーチング導線バナー

「意識 × 認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right