データ・アナリティクス入門

実例でわかる抜け漏れゼロの分析術

抜け漏れチェックはどうする? 分析の要素を検討する際、抜け漏れや重複がないかどうかを意識することがとても重要だと感じました。これまで、何気なく分析要素を挙げていたため、知らないうちに抜け落ちたり、同じ内容が重複してしまったりするケースがあったと思います。今後は、ロジックツリーなどの手法を活用し、適切かつ網羅的な分析要素を抽出できるよう努めたいです。 売上向上に本当に効く? また、離職率の改善や売上増加といった課題に対して、今回の学びが有効に活かせると感じています。動画で紹介されていたように、離職の原因分析や売上向上のために何がネックになっているのかを明確にすることで、具体的な対応策を検討する際の手助けになると考えています。

データ・アナリティクス入門

多角視点で捉えるデータの魅力

データ理解の原点は? 今週は、データの理解を出発点とする学習に取り組みました。データとは、ひとつの側面だけでなく多角的に捉えるべきものであり、個人的な偏りを排して客観的に扱う難しさがあると感じました。 判断の落とし穴は? また、データそのものの意味を正確に把握することと同様に、データを活用する目的を明確にすることも非常に重要だと思いました。迅速かつ効率的な業務が求められる場面では、あまりにも素早く判断しようとすると、過去の経験や似た事例に頼りがちになり、その結果、重要な要素を見落としてしまうリスクがあると実感しました。

クリティカルシンキング入門

多角分析で見える学びの可能性

データ切り取り方は? データの断面によって得られる情報は大きく変わると実感しました。また、切り取り方次第では全く情報が得られない場合もあるため、講義で学んだ層別分析、変数別分析、プロセス別分析など、様々なデータ分析手法を活用することが重要だと感じています。 評価方法はどう? プロジェクト評価の際には、費用増減の要因を多角的に分析することで、内容の深い理解と説明力の向上が期待できると認識しました。実際のデータは、参考とした先行事例よりも複雑であると感じ、分析の試行回数を増やして直感的な感覚を体得したいと思います。

データ・アナリティクス入門

初挑戦!フレームワークで深掘り学び

どうして原因探る? 問題の原因を探るため、what、where、why、howという流れを意識し、その時々に応じた適切なフレームワークを活用することで、より効率的かつ効果的に分析ができると実感しました。 なぜ知識足りない? これまで体系的に経営学やマーケティングを学んだ経験がなかったため、自身のインプットが不足していると痛感しています。特に、フレームワークに関しては、その基本概念を理解していなければ活用が難しいため、具体的な活用例などと合わせながらしっかりと学んでいきたいと考えています。
AIコーチング導線バナー

「活用 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right