クリティカルシンキング入門

MECEで広がる分析の世界

分析計画の狙いは? MECEを意識して分析計画を立てることの重要性について学びました。分析はまず大局的な視点から始めることが大切です。傾向を掴んだとしても、それが必ずしも正しいとは限りません。そのため、正確性を確認するために、必要に応じてさらに詳細に分解する必要があると感じています。 分解の意味は何? 実際に行っているデータ分析について考えたところ、MECEを満たしているようではあったものの、それを意識的に行うことはできていませんでした。分析のスタートポイントとして分解を意識して、分析計画を立てる必要があると強く感じました。 感覚分析の問題点は? これまでの分析は感覚的に行っていた部分がありました。分析計画は立てていましたが、分解に着目するということが不足していました。解がスタート地点であることを学んだので、今後は分析計画の段階で、MECEなど今回学んだロジックに沿って計画が立てられているかを確認していきます。

データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

クリティカルシンキング入門

5W1Hで切り拓く新規事業の鍵

--- MECEを意識する重要性 切り口および分析について、常にMECE(Mutually Exclusive, Collectively Exhaustive)を意識して分析することの重要性を整理することができました。特に、導入部分での分析項目の洗い出しにおいて、いかに漏れなく切り口を探るかが検証の鍵であると理解しました。 新規事業企画での試み 現在、新規事業企画を行う部署に所属しており、偏見を持たずに課題を確認し、様々な視点で洗い出しと検証を行いたいと考えています。特に、5W1Hを使用して漏れなく確認し、価値ある人やモノを創出すべきかを見出したいと考えています。 5W1Hを活用すると? 月並みではありますが、5W1Hをしっかり検討しきったかを常に自問自答したいと考えています。分析時はもちろんのこと、客先にヒアリングを行う際にも、どの情報が不足しているかをフレームに照らし合わせて考えたいと思います。 ---

クリティカルシンキング入門

相手に伝わるコミュニケーションの極意

伝える前の準備は何が重要? 相手に何かを伝える際には、話す前に自分の考えや伝えたい内容、目的、そして理由をしっかりと整理しておくことが重要だと理解しました。伝えた後には、ちゃんと伝わったかどうかを確認し、さらに相手の話を聞きながら生じたギャップを埋めていくことが大切です。 相手のニーズをどう捉える? 私が関わっている業界では、相手のニーズや要望、期限や制約などを明確にすることが非常に重要です。これまでの私は、相手から話を引き出すことに注力してきましたが、なぜそれが必要なのかの説明が不十分だったかもしれません。相手のレベルに合わせて話を進める必要性を感じています。 コミュニケーションの目的とは? コミュニケーションは何のために行うのか、その目的と目指すゴールを常に意識して、話し、そして聴くことが重要です。お客様との商談、社内のメンバーやパートナーとの会話、面談において、これを明確に実行したいと思います。

クリティカルシンキング入門

データ分析の新しい視点を発見!

目的と仮説の意義は? データ分析を行う際には、目的と仮説をしっかりと持って取り組むことが大切です。そして、分析の結果に対する「それでどうなるのか?」を明確にすることを意識しましょう。MECE(モレなくダブりなく)にグルーピングした後、そのグルーピングを自分でレビューし、精度を高めることも重要です。 自己レビューの限界は? 私は日常的に分析や示唆出しを行っており、適切な粒度でグルーピングをすることの重要性を感じています。しかし、自己レビューには限界があるため、まず自分でレビューをした後に、他者からのレビューを意図的に組み込むことで、多角的な視点を得るようにしています。 レビュー導入の理由は? 分析後には、レビューを求めるプロセスを自身の業務フローに組み込んでいます。他者のレビューを得るために、締切よりも早めの段階でアウトプットを心がけています。この取り組みは、企画を伴うすべての業務に適用しています。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

データ・アナリティクス入門

数値で見える問題解決の道

現状とあるべき姿は? 問題解決の最初のステップとして、現状とあるべき姿を定量的に示すことの重要性を再認識しました。合わせて、ロジックツリーやMECEの考え方についても学び、特にMECEの「モレなく、かぶりなく」という定義がどのように要素全体をカバーするかという点で理解が深まりました。 議論の糸口は? チームで問題解決のアイデア出しを行う際には、ロジックツリーを活用してミーティングを進める方法が有効だと感じています。また、議論の中でMECEを意識することで、問題解決への多様なアプローチが見つかると実感しました。 数値で示す理由は? さらに、根本的な解決のためには、まずチーム全体で現状とあるべき姿を数値的に明確に示すことが不可欠だと感じています。今後は、初心に立ち返りこの点について改めて話し合い、ブレインストーミングなどの会議でもロジックツリーを活用して、より論理的な結論へ導いていきたいと思います。

クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

クリティカルシンキング入門

基礎から磨く伝える力

問いの共有はどう? 日頃から仕事で「イシューは何か」を考えてはいたものの、問いを意識し続けたり共有することはあまりできていなかったと感じています。しかし、共有がなければ話が進まず、解決策を見つけるのが難しいということにも気づきました。 データ活用の期待は? 来月からはデータ部門のサポートに入るため、さまざまなデータを活用してイシューの洗い出しと解決策の検討を行うのがとても楽しみです。これまで学んだ内容をもとに、相手に分かりやすく伝えるため、図や表、イメージなどを積極的に活用しようと考えています。そのためにも、まずは基本から再度復習することにします。 伝える工夫は何? まず、基本をしっかりと復習し、自分の言葉でノートにまとめたアウトプットを行います。そこから実務でデータを使い、自分なりの工夫を加えたスライド作成や資料作りに取り組むとともに、人に伝えるための表現方法にも意識を向けていこうと思っています。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

データ・アナリティクス入門

A/Bテストで売上向上へ、新たな一歩

仮説検証の重要性を再確認 段階を踏んで仮説検証を進める重要性を改めて認識しました。また、A/Bテストという手法についてこれまで全く知らなかったため、新しい分析方法として今後積極的に活用したいと考えています。 A/Bテストの効果的な活用法は? 売上向上の施策に対しても、効果検証としてA/Bテストを用いてみたいと思います。これまで効果検証自体は実施していましたが、異なる施策を同時に行ったことはありませんでした。今後は実施できる事案を含め、慎重に検討していく予定です。 情報共有と承認のステップ まず、1か月以内に従来の施策とA/Bテストによる効果検証の違い、メリット・デメリットに関して部長会で情報共有を行う予定です。その際、A/Bテストが実施できそうな事案についても紹介し、従来法では得られない効果まで説明します。実施に対する承認を得た後は、来期の1Q内に実務担当者と協力し、テストを実施する予定です。

クリティカルシンキング入門

直感を超える分析力で未来を変える

「MECE」で効率的に分析する方法とは? 目で捉えた情報は、直感的に判断するのではなく、まず分解して考えることが重要です。分解の手法としては、まず全体を定義し、MECE(もれなくダブりなく)を意識して複数の切り口から分析を行います。MECEを適用することで、効率的な分析が可能となります。たとえ思い通りの結果が出なかった場合でも、それ自体が貴重な分析結果と捉えることが大切です。 WBS作成で精度を上げるには? たとえば、プロジェクトのWBSを作成するときには、全体を定義した後、いくつかのカテゴリに分解して、重複がないかチェックすることで、効率化と精度向上を図ることができます。また、システムの基本設計を行う際には、MECEを応用し、実装時に条件の重複を減らすことでエンジニアの工数を削減します。さらに、製品のUI/UXを検討する際も、仮説や切り口を複数持って分析することで、ユーザの満足度を高めることができます。

「行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right