データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

戦略思考入門

学びを深める!フレームワーク活用法

学びの根拠はどう? 今までの学習内容を振り返りながら総合演習を行うことで、学びが一層深まりました。何か施策を行う際には、「現状が○○であるからこの施策を行うべき」「自社の資源に○○があるので他事業にも転用できる」といった根拠が必要です。この根拠は、現状の深い分析を通じて得られるものであると、改めて実感しています。 現状考察はどうなってる? 目先のゴールにのみ焦点を当てがちですが、現状の考察を怠らないよう心がけたいと思います。また、ビジネスフレームワークを活用することで、現状の情報を効率的に整理できることを体感しました。今後は、活用できる場面を増やし、効果的な情報整理を実現したいです。 部署の未来はどう? 自部署においても、先の目標やロードマップを描くと同時に、現状分析を網羅的に行うことの重要性を感じています。今後、新規事業を展開する予定があるため、現状を大局的な視点から整理し、価値や独自性の把握、範囲の経済を活かせるかどうかの考察が必要となります。 分析の手法は何? 現状分析においては、フレームワークを活用していこうと考えています。例えば、VRIO分析を使って自部署の価値や独自性を把握し、SWOT分析で内部・外部環境要因を整理する、そしてPEST分析でマクロ視点から情報を整理します。フレームワークにはまだ慣れていないため、まずは手を動かして情報を分析・整理する力をつけていきたいと思います。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

データ・アナリティクス入門

目的と丁寧さで切り拓く成長の一歩

目的は本当に明確? 全体の学習を振り返る中で、まず「目的を明確にする」ことの大切さを実感しました。分析の目的を最初にしっかりと考えることで、効率的に検討を進め、目標に向かう道筋がはっきりしていくと感じます。 解決策はどう整理? 次に、「問題解決のステップに沿って丁寧に考える」ことが重要であると再認識しました。what、where、why、howといった視点を順を追って整理することで、論理的に整った考え方ができ、正しい解決策にたどり着けると感じました。 分析はどう区切る? また、分析とは「分けて比較する」作業であるという点が強く印象に残りました。難しいものという意識を捨て、シンプルにとらえることで、より具体的に物事を捉えやすくなったと感じています。 目的確認で効率化? さらに、頼まれた仕事や指示された業務においても、ただ漠然と取り組むのではなく、その目的をしっかりと確認することで、仮説が立てやすくなり、効率的かつ生産性の高い仕事ができると実感しました。自ら考え抜く姿勢が、意欲的な取り組みにつながるのだと思います。 学びはどう定着する? この講義で得た学びをノートにまとめ、復習を重ねることで自然な形で分析に向き合えるよう、自分の中にしっかりと定着させていきます。最初に浮かんだ解決策にすぐ飛びつくのではなく、常に冷静に考え、丁寧な検討を続けていこうと心に誓いました。

戦略思考入門

差別化とコスト削減の成功戦略

顧客価値をどう考えるべきか? 良い差別化のポイントには、顧客にとって価値があるかどうか、顧客視点の競合を意識したものであるか、実現可能性や持続可能性について検討したものであるかの三つがあります。さらに、VRIO分析を行うことで、経済価値、希少性、模倣困難性、組織に関する問いに答え、資源の有効性を評価できます。また、ポーターの三つの基本戦略に基づき、企業の戦略を「コストリーダーシップ」「差別化戦略」「集中戦略」に分けることができます。これにより、戦略の起案や競合の戦略把握に役立ちます。 自社の戦略をどう強化する? 自社はポーターの三つの戦略のうち、コストリーダーシップに位置しています。コストの削減に努めており、自前主義が功を奏し、生産から販売、配送に至るまでワンストップで提供しています。さらに、社内のシステムも自前で作っており、アウトソーシングによるコストを削減しています。特に配送の自前は他社には模倣しづらい領域であり、当社の特長と言えます。今後は差別化戦略をさらに取り入れることで、強みが増すのではないかと考えています。 同業他社との差異をどう見つける? 同業他社のビジネスについてもVRIO分析を実施していきたいと思います。これにより、自社の強みを改めて理解し、弱みを見つけ出せることで、新たなビジネスや戦略の糸口が見つかるのではないかと感じました。時間は限られていますが、実践してみたいと思います。

戦略思考入門

実践で磨く!大局の戦略力

実践から気づきを得る? 講義の実践演習で取り上げられた「3人の主任」のケースは、自身の現状と重なる部分が多く、日々の活動を振り返る貴重な気づきとなりました。演習を通じて、戦略検討時には目先の情報に振り回されず、大局的な視点を持つ重要性を再認識できました。また、戦略に整合性が欠けると経営資源が無駄になるため、外部環境と内部環境を十分に分析した上で、一貫性のある効果的な戦略を立案する必要性を痛感しました。なお、環境分析のフレームワークに関しては知識としては理解しているものの、実務への活用が不十分であるという課題も感じています。今後は「実際に使ってみること」を最重要事項とし、チームメンバーの視点も積極的に取り入れながら、確かなスキルとして定着させていきたいと考えています。 中期計画の視点は? 現在検討を進めている中期経営計画の策定において、これまで学んだプロセスを実践していく予定です。具体的には、まず自社分析から始め、事業部ごとの売上や利益構造を詳細に把握し、どの領域に高い成長性があるかを正確に見極めます。その上で、外部環境のマクロ動向、競合の動き、顧客ニーズなどをPEST分析や3C分析を用いて可視化し、自社の強みとの整合性を検証していきます。今年度の3月を目途に戦略骨子を固め、本年5月上旬の経営層を含む重要会議で、根拠に基づいた質の高い議論が展開できるよう、多角的な視点から策定を進めていきたいと思います。

クリティカルシンキング入門

データで読み解く商談の真実

分析目的はどう決める? 数字の分け方や分解方法で、同じデータからまったく異なる分析結果が得られることを学びました。データ分析に取り組む際は、まず分析の目的を明確にし、その後で全体の定義(たとえば分析対象の期間など)を設定することが大切だと感じました。また、グラフ化することで視覚的に理解しやすくなる点も印象的でした。たとえ何も見えなくても、それ自体が正しい結果であると捉え、試行を続けることの重要性を再認識しました。 営業分析のポイントは? さらに、営業分析に応用できると考えた事例もありました。ここ半年間の商談を以下の要素に分解することで、自身の強みと弱み、そしてボトルネックの特定に役立てられるのではないかと思いました。具体的には、①顧客属性(業種、規模、地域)でどの顧客に強いか、または弱いかを把握し、②接点属性(チャネル、紹介元)から成果に結びつきやすいリードを見極める。そして、③商談構造(課題の種類、緊急度)で勝ちやすい案件の特徴を探り、④プロセス分析(商談フェーズ、失注理由)でどの段階に課題があるかを明確にするという点です。 MECE分析はどう考える? また、MECE分析に関しては、全体をどのように部分に分けるか、事象をどの変数で分解するか、そして全体プロセスの中でどこに問題が潜んでいるのかを考察することに難しさを感じています。皆さんはどのようにアプローチされているのか、大変興味があります。

データ・アナリティクス入門

なぜ?を突き詰める実践の知恵

原因の深掘りは? トヨタ式「5 Why」を活用し、表面的な原因だけにとどまらず根本原因へと掘り下げる手法が、知識としてだけでなく実践の糸口となった点が印象に残りました。 複数策はどう? また、解決策の検討では、一案に固執せず複数の選択肢を洗い出し、データや定性情報をもとに実現可能性・効果・コストを比較するプロセスがとても参考になりました。さらに、A/Bテストを活用することで条件を統一しながら柔軟に施策を検証していく方法も有効だと感じました。 本質を見抜く? 総合演習を通じて、データを多角的な視点―性別や年齢、曜日、クラスレベルなど―で分解し分析することで、課題の本質を見出す大切さを学びました。アンケート結果と生徒のコメントから、具体的な不満点が明らかになり、問題解決の手がかりをつかむことができました。 なぜを追求する? また、複数の仮説を立て「なぜ?」を繰り返し問うことで、定量データと現場感覚を両立させたアプローチの重要性を実感しました。目的を明確にし、何を改善するのかを起点に指標や手法を選ぶ姿勢は、実際の改善策を実行する上での大きな指針となりました。 具体策は何? 特に、社員の離職率改善を例に、採用からオンボーディング、定着施策までの各段階における仮説立案と検証の流れを学ぶことで、短期・中期・長期のステップで具体的なアクションプランを策定する手法が実践的であると感じました。

データ・アナリティクス入門

比較で解く!データ分析の秘訣

分析の重要性を理解する 「分析とは比較なり」ということを理解することができました。比較対象が存在しないと、分析が適切かどうかを判断したり、報告相手に納得してもらうような報告ができないと感じました。比較する際には、同じ条件のものを正しく選ぶことが重要であることも学びました。また、データの種類や内容に応じて、効果的に見せる方法を使うことで、報告相手への説得力を高められることも理解しました。これからは、分析結果やデータの種類に応じた適切な見せ方を習得していきたいと思います。 データ比較の実践方法は? 交通系ICカードの決済実績やポイント付与キャンペーンの実績において、前年やキャンペーン開始前のデータと比較し、どのように変化しているか、キャンペーン効果がどう出ているかを分析し、効果を測定したいと考えています。また、分析結果を円グラフや棒グラフ、折れ線グラフを使ってわかりやすく示し、説得力を高めて伝える方法にも意識を向けたいです。 スキル向上への取り組み まずはナノ単科で学んだ内容をしっかりと身に付け、一つでも多く自分のものにしていくことを目指します。そして日々のデータ分析業務において「分析とは比較なり」を心掛け、問題点や課題を正確に把握し、比較分析を徹底するとともに、説得力があり理解しやすいアウトプットを実践していきたいです。そのために必要なエクセルやパワーポイントのスキルを勉強し、磨いていきます。

クリティカルシンキング入門

データ分析で得る新たな視点と知見

分解の効果は何? データを分解することで、より多くの知見を得られることを実感しました。特に、ある特徴が一つの切り口で現れた際に、それだけで答えを決めつけると他の観点から見ると誤りであることがあることに新鮮さを覚えました。答えが見つかったように見えても、それはあくまで仮説であり、しっかりと検証することが重要だと感じました。 現状をどう把握する? ITシステム品質保証チームの今後の戦略を立てるにあたり、まず現状を把握したいと思います。そのために、システムの品質評価を分解し、現状に対する課題を見つけ、知見を得たいと考えています。具体的には、ユーザーが5段階で評価したデータの平均値であるNPS平均を分解していきます。 どの切り口が有効? まず、MECEを意識しながら様々な切り口を考えます。層別分解としては、ユーザーの属性別や単価別を検討します。変数分解としては、評価の平均は合計値を評価数で割ることで得られるため、5段階各評価ごとの合計をグラフ化します。また、評価数の分布や1ユーザーあたりの評価回数の層を作り、さらに分解して考察します。プロセス分解としては、ユーザーが新規登録してからサービスを利用し終えるまでの流れをプロセスに分けて、各段階での評価がどの程度であるかを分析していきます。 検証の重要性は? 以上のように、さまざまな観点から分解することで知見を得ることを目指します。

データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。
AIコーチング導線バナー

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right