戦略思考入門

ジレンマを乗り越える戦略のヒント

ジレンマの意味は? 「ジレンマを恐れない」という言葉が非常に印象に残っています。特に、短期的なリターンと長期的なリターンのどちらを選ぶべきかという考え方に陥りがちな自分を改めて認識しました。ジレンマを適切に恐れずに対処するためには、フレームワークを用いて全体を抜け漏れなく俯瞰して戦略を立てることが大切です。今回、3C分析、SWOT分析、バリューチェーン分析の概要を学びましたが、特に3C分析とSWOT分析は現在の業務に必要なフレームワークであり、実際に活用して理解を深めたいと思います。 どう戦略すべき? マーケティングやインサイドセールスの戦略を立てる際、短期から中長期的な視点でジレンマを感じ、立ち止まることが多いと気づきました。まずは、どのような場面でジレンマを感じるのかを言語化し、適切に対処していきたいと考えています。 戦略をどう描く? 現在、来期の戦略を作成している状況であり、3C分析やSWOT分析を通じて受注や失注の分析に偏らない広い視点でのターゲティングや行動計画を立てたいと思います。また、製品資料やランディングページを作成する際のターゲティングや表現についても活用できると考えています。 情報はどう整理? 3C分析やSWOT分析の概要は理解しましたが、どの粒度や範囲で情報を収集・列挙すべきかまだ明確ではありません。フレームワークを何度も使用し、来期の目標や計画を立てる際にまずアウトプットを作成し、それを通じてフレームワークの精度を高めていくことを目指します。フレームワークを利用する中で、どのような情報をどのように整理すべきかを模索していきたいです。

アカウンティング入門

数字がひらく!PL分析と利益の秘密

動画講義の要点は? PLに関する動画視聴では、実践的な詳細の構造や読み解くコツが解説されており、非常に勉強になりました。まずは、全体の流れとして売上の最高値と利益の最低値に注目し、その後で中間層の5つの利益を通してどのように金額が減少していったかを理解する手順を学びました。これにより、売上高との比率や他の利益との差を比較しながら、どこに費用がかかっているのかを分析する方法が身につきました。 カフェ事例はどう感じる? カフェビジネスに関する設問では、ビジネスとしてお客様に提供する価値を考慮しながらPLを読むことの重要性を学びました。儲けを増やすためには、売上の増加や費用の削減が必要ですが、ビジネスモデルに合った調整が求められる点を再認識しました。 財務分析の視点は? ① プロジェクト関係の財務状況を調べる際には、同業他社と比較し、どの部分に費用がかかっているかを売上高との比率をもとに分析できる力を養いたいと考えています。また、経営陣から常に儲けを求められているため、会社の価値観に沿った儲けの増やし方を模索しています。 決算書の謎は何? ② PLにおける各項目の利益率を理解し、なぜそのような構造になっているのかを決算書類などから原因を解明していく姿勢は、とても参考になりました。 競合比較はどうかな? ③ まずは自社と他の競合企業を比較し、どのようにして儲けを出しているのかを理解したいと考えています。また、事業投資を担当しているため、形として明確なサービスがあるわけではなく、お客様に提供する価値の理解から始める必要性を感じています。

データ・アナリティクス入門

数字と論理で未来を切り拓く戦略

何が問題なの? 直面している課題や状況を整理する際、まずは「何が問題なのか」「どこに課題があるのか」「その原因は何か」をはっきりさせ、さらに原因に応じた有効な解決策を検討するプロセスの重要性を改めて実感しました。複数の切り口から状況を把握し、定性的な評価も加味しながら優先順位をつける方法は、日々の業務や計画作成にとても役立っています。 現状のギャップは? また、「あるべき姿」と「現状」とのギャップを定量的なデータで示すことで、問題の本質が明確になる点も印象的でした。具体的な数値やトレンド、ばらつきまで丁寧に分析することで、正しい状態へ戻すための対策が見えてくると感じました。こうした定量分析の視点は、実際の現場での判断材料として非常に有用です。 サンクコストは? さらに、サンクコストの考え方にも気づかされました。すでに支出してしまったコストに固執せず、未来のために合理的な判断を下すことが大切であるという点は、今後の意思決定に活かしていきたいと思います。 MECEの意味は? 最後に、MECE(もれなくダブりなく)を意識してロジックツリーを用いながら事象を整理する方法も、新たな視点として非常に学びになりました。事象を年齢や季節、販売数などさまざまな要素に分解し、全体像を捉える努力は、複雑な問題に対処する上で大いに役立つと感じています。 学びはどう活く? 以上の学びを踏まえ、①定量的データに基づく現状把握、②優先度や重要度を考慮した計画立案、③場面ごとのMECEの適用というプロセスを、今後の日々の業務に活かしていきたいと考えています。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

仮説で拓く問題解決の未来

仮説の重要性は? 今回の学習で最も印象に残ったのは、「問題解決は仮説の立て方で8割が決まる」という考え方です。What〜Howの4ステップを通じて、まず問題を正しく定義することの重要性を実感しました。また、仮説は一つに固定せず、複数の切り口から検討することで思い込みを防げる点も大変参考になりました。データ収集においては、誰にどのように聞くかが分析の質を左右するため、都合の良いデータだけでなく反証のための情報も意識的に集める姿勢が必要だと学びました。今後は、3Cや4Pといったフレームワークを活用しながら、仮説思考をもとに論理的な問題解決に取り組んでいきたいと考えています。 業務での応用は? また、SIerの業務においては、今回学んだ考え方が「障害対応」、「業務改善提案」、「要件定義」の各場面で役立つと感じました。例えば障害対応では、現象に対する即時対応に加え、Whatで問題を整理し、Whereで影響範囲や発生箇所を特定、Whyで複数の原因仮説を立て、ログや関係者へのヒアリングを通じて検証を進めるやり方に変えることが求められます。業務改善においては、3Cや4Pを活用して顧客課題を構造的に捉え、直感ではなく仮説とデータに基づいた提案を行いたいと考えています。今後は、会議前に最低3つの仮説を用意し、データ収集の際にも反対意見の情報を集めるなど、具体的な行動レベルで実践していく予定です。 今後の展望は? 今後は、仮説をいつ確定させるかの判断基準や、少ないデータでの分析における工夫、さらにはフレームワークの使い分け方のコツについても、さらに深く検討していきたいと思います。

戦略思考入門

全体を見据えた戦略の軌跡

戦略全体はどう見える? 経営戦略の全体像を学び、普遍な理念、中長期的なビジョン、そして具体的なアクションプランとしての戦略が存在することを理解しました。戦略は、部分最適を排除し全体最適を実現する有効な手段であり、優れた戦略を立てるためには中長期的な視点と、内外の環境を含む多方面の知識が必要であることを改めて感じました。 実践の足りてる? また、GAiLでの振り返りを通して、学びを身につけるためには実践が不足しているという点にも気付かされました。 全体視点は十分? 自社においては、経営理念やビジョンの確認を踏まえ、経営戦略を再認識する必要性を感じています。業務面では、食品卸の営業活動において、各カテゴリーごとに提案を行なっていますが、担当するカテゴリーだけでなく、他のカテゴリーも含めた全体を意識することが大切だと考えました。後から振り返るだけでなく、活動前に戦略的な考察を深める姿勢が求められています。カテゴリー横断での取りまとめが増える中、部分最適に陥らないよう、中長期的な視点を強く意識する必要があります。 具体的な行動計画としては、まず自社の「経営理念」と「ビジョン」の確認を5月中に実施し、その後、所属する業界のPEST分析や自社の3C分析、そして自分が担当するカテゴリーと取りまとめを行う他の3カテゴリーについての3C分析を6月内に行う予定です。また、朝の30分や通勤時間を利用し、学びの習慣を継続していきたいと考えています。現時点ではフレームワークをノートを見ながら使用しているため、まずは各分析を通じて経験を積み、知識を深めていきたいと思います。

クリティカルシンキング入門

新しい視点でデータを活用するヒント

データ分析の新たな視点は? データの加工や分析など、日常業務で行うことが多かったが、今まで機械的に区分していたことに気づいた。例えば、10歳刻みで分けることはあっても、19歳〜22歳の大学生という区分で考えることはなかった。しかし、高校生・大学生・社会人という区分で行動が異なることから非常に納得できた。また、MECEを意識して複数の切り口で分解することを、すぐに実践に活かしたいと思った。 効果的なフィードバック法は? 研修や会議等の企画、運営を行う際には、事後アンケートを実施している。これまでのフィードバックは、コメントや全体の感想のみを基にしていたが、アンケート取得時には役職や年次などの詳細なデータも把握できる。これにより、MECEを意識した層別分解を活用することで、現状をより具体的に把握し、改善点としてフィードバックを行いたい。より良い研修や会議の運営を目指すためにも、この手法を取り入れたい。また、営業推進業務においてもデータの取り扱いが多いので、率算出やグラフ化などを行い、データから得られる情報をしっかりと把握することで、全国への営業推進に役立てたい。 目的を持ったアンケートの活用法は? 研修や会議の計画に際しては、分解を踏まえ、自分が把握したい点や次回以降の運営のために知りたい点を事前にしっかり考えることが重要だと感じた。その結果、目的を持った事後アンケートの設問を考えることができる。アンケート取得後には結果だけに頼らず、MECEを意識した分解によって多くの情報を把握し、それに基づいて現状を知り、今後の業務に活かすようなフィードバックを行いたいと思う。

アカウンティング入門

損益計算書と貸借対照表から見るテーマパークの軌跡

売上内訳をどう捉える? 今回の分析では、あるテーマパーク企業の財務諸表を用いて、損益計算書(P/L)と貸借対照表(B/S)の両面から検証を行いました。まずは、P/Lの構造に焦点を当て、売上高と売上原価の内訳を整理しました。売上に関しては、アトラクションやグッズの販売が主要な要素となっており、ホテル部門も売上に寄与していることが分かりました。また、サービス産業ならではの特徴として、売上原価に人件費が含まれている点や、減価償却費が大きな割合を占めていることにも注目しました。 B/Sの新発見は? 一方、B/Sの分析では、固定資産の大部分が土地と施設で構成されていることは予想通りでしたが、建設仮勘定の割合が高い点に新たな発見がありました。これにより、企業としてはアトラクションなどの非日常的な体験を提供することと、グッズ販売などによる付加価値の創出が、経営上重要な役割を果たしているという結論に至りました。 業績回復の背景は? コロナ禍により一時的に売上が落ち込んだものの、近年は業績回復が著しく、その動向から企業の経営理念、売上増大のためのメソドロジー、そして提供する価値に対する考え方を包括的に理解することができました。 分析から学ぶ戦略は? さらに、今後は自社を中心に据えつつ、他業界や同業他社、そして国内外の事例を取り入れた分析を進めることで、自社の経営戦略に生かしていきたいと考えています。そのためにも、財務諸表を一つのツールとして、企業情報の収集(ネットや生成AIを活用)や、さまざまな角度からの分析を、まずは簡単な形から始める取り組みが重要だと実感しました。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

戦略思考入門

ビジネス効率を左右するシナジーの真実

経済性の理解は十分? 規模の経済や不経済、範囲の経済、ネットワーク効果といった概念を正しく理解することは、事業経済性のメカニズムやビジネス法則を誤らないために必要です。特に、指数関数的に変化する現代では、テクノロジーがキーワードとなり、迅速な対応が競争の基盤となっています。 シナジーは本当に有効? 学んだことの一つに、「シナジーは本当にあるのか」という点があります。既存の資源を活用して効率的にビジネス展開を行うことが一般的ですが、その方法が本当に効果的なのか、既存資源が競争優位性として本当に機能しているのかを慎重に分析する必要があります。シナジーが逆に非効率的になることもあるからです。 部署異動は効果ある? 自社業務に当てはめて考えると、社内異動が範囲の経済に関連するのかという疑問が生じます。現在所属している技術部から、将来的にマーケティングや営業など他の部署への異動を考慮していますが、過去の知見や経験を新しい部署に活かすことでシナジー効果が本当に生まれるかという点について考えたいです。これをどのように分析し、判断すべきなのかを検討しています。 兼任制は効率化? また、組織内で兼任制を採用しており、ISO監査やプロジェクト管理、営業活動を行っていますが、規模の経済性から見るとこの方針が適切かどうかも重要な検討事項です。このようなことも鵜呑みにせず、メリットとデメリットをしっかり整理し、分析する習慣を持つことが大切です。指数関数的に変化する時代において、判断に迷う場合はまず行動を起こし、やりながら調整しつつスピードを出すことも求められていると感じます。

クリティカルシンキング入門

考えを広げるクリティカルシンキングの力

自分の考えは正しい? 人は「考えたいこと」に囚われがちであり、その考えは容易に偏ったり誘導されたりします。そのため、客観的な視点、すなわち「もう1人の自分」を意識し、本当にその考えで良いのかを疑うことが重要です。 どう鍛えるべき? クリティカルシンキングを身につけるためには、日常的に繰り返し練習することが必要です。「本当にそれでいいのか」「他に視点はないか」といった疑問を常に思考に組み込む習慣をつけることで向上します。具体的には、クライアントへのメールや1on1の場面、家族との何気ない会話の中でもトレーニングを行うことが可能です。 他人の意見を聞く? 自分の論理を優先しがちですが、他人の意見から学ぶことが多い場合もあります。業務においては、例えば自社の損益にばかり気を取られ、クライアントの立場や利益を考慮しないことがあります。偏見に囚われず、フラットな姿勢で他者の話を聞く意識が必要です。 他の提案はどう? クライアントへのサービス提案時には、「これ以外の方法はないか」や「逆に〇〇のサービスはどうだろう」といった問いを自分に投げかけ、さまざまな視点から提案内容を考えることが鍵となります。提案する際にはシンプルさを心がけ、「なぜならば」という論理的な展開で一貫性を持たせます。そして、フィードバックを受ける際には偏りなく意見を聞く姿勢が求められます。 多角的な視点で? チームの目標設定においても、課題を分析し、「他の視点は?」と多角的な視点を考える必要があります。また、他のチームからの評価を通じて客観的にチームの強みや弱みを見極めることも重要です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。
AIコーチング導線バナー

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right